
1

Verifying Outsourced Replicated Data in

Cloud Computing Storage Systems
Ayad F. Barsoum1 and M. Anwar Hasan 2

1Computer Science Department, St.Mary’s University, San Antonio, Texas, USA
2Department of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada.

abarsoum@stmarytx.edu, +1 (210) 436-3315

Abstract

Storage-as-a-Service offered by cloud service providers (CSPs) enables customers to store

and retrieve almost unlimited amount of data by paying fees metered in GB/month. For an increased

level of scalability, availability and durability, some customers may want their data to be replicated on

multiple servers across multiple data centers. In this paper, we propose a pairing-based provable

multi-copy data possession (PB-PMDP) scheme, which provides an evidence that all outsourced

copies are actually stored and remain intact. Moreover, it allows authorized users (i.e., those who

have the right to access the owner’s file) to seamlessly access the file copies stored by the CSP,

and supports public verifiability. The proposed scheme is proved to be secure against colluding

servers. We illustrate the performance of the PB-PMDP scheme through theoretical analysis, which

is then validated by experimental results on a commercial cloud platform. The verification time of the

proposed scheme is practically independent of the number of file copies. Additionally, we discuss

how to identify corrupted copies by slightly modifying the proposed PB-PMDP scheme.

Index Terms

Cloud computing, outsourcing data storage, data replication, cryptographic protocols, data

integrity, verification techniques.

F

1 INTRODUCTION

Cloud computing is a distributed computational model over a large pool of shared-virtualized

computing resources (e.g., storage, processing power, memory, applications, services, and net-

work bandwidth). Cloud computing represents a vision of providing computing services as

public utilities like water and electricity. It can potentially offer a number of key advantages:

cost effectiveness, low management overhead, immediate access to a wide range of applications,

flexibility to scale up/down information technology (IT) capacity, and mobility where customers

can access information wherever they are, rather than having to remain at their desks.

2

Outsourcing data to a remote cloud service provider (CSP) allows organizations to store

more data on the CSP than on private computer systems. Such outsourcing of data storage

enables organizations to concentrate on innovations and get relief from the burden of constant

server updates and other computing issues [1]. Moreover, many authorized users can access

the remotely stored data from different geographic locations making it more convenient for

them. A relatively recent survey indicates that IT outsourcing has grown by a staggering 79%

as organizations seek to focus more on their core competencies and reduce costs [2].

However, the fact that data owners no longer physically possess their sensitive data raises

new challenges to the tasks of data confidentiality and integrity in cloud computing systems.

The confidentiality issue can be handled by encrypting sensitive data before outsourcing to

remote servers. As for data integrity, the owners need to have a strong evidence that cloud

servers still possess their data and it is not being tampered with or partially deleted over time,

especially because the internal operation details of the CSP may not be known to customers.

Traditional cryptographic primitives for data integrity and availability based on hashing

and signature schemes are not applicable to outsourced data without having a local copy.

It is impractical for the owners to download all stored data to validate its integrity; this

would require expensive I/O operations and immense communication overheads across the

network. Therefore, efficient techniques are needed to verify the integrity of outsourced data

with reduced communication, computation, and storage overheads. Consequently, many re-

searchers have focused on the problem of provable data possession (PDP), and proposed

different schemes to audit the data on remote storage sites.

PDP is a technique for validating data integrity over remote servers. In a typical PDP model,

the data owner generates some metadata/information for a data file to be used later for

verification purposes through a challenge-response protocol with the remote/cloud server. The

owner sends the file to be stored on a remote server which may be untrusted, and deletes the

local copy of the file. As a proof that the server is still possessing the data file in its original

form, it needs to correctly compute a response to a challenge vector sent from a verifier – who

can be the original data owner or a trusted entity that shares some information with the owner.

Researchers have proposed different variations of PDP schemes under different cryptographic

assumptions; for example, see [3]–[11]. PDP schemes presented in [3]–[11] focus on a single copy

of the file and provide no proof that the CSP stores multiple copies of the owner’s file.

Curtmola et al. [12] were the first to present a multiple-replica PDP (MR-PDP) scheme that

creates multiple copies of an owner’s file and audit them. The MR-PDP scheme increases

data availability; a corrupted data copy can be reconstructed using duplicated copies on other

servers. The interaction between authorized users (those who have the right to access the

3

owner’s file) and the CSP was not considered in [12]. The MR-PDP scheme supports only

private verifiability, i.e., only the data owner can check data possession. Public verifiability is

a key feature in remote data checking schemes to avoid disputes that may arise between the

data owner and the CSP. Delegating the auditing process (without revealing secret keys) to a

trusted third party for verifying the data integrity can resolve such disputes.

Main contributions. Our contributions can be summarized as follows:

• We propose a pairing-based provable multi-copy data possession (PB-PMDP) scheme. This

scheme provides an adequate guarantee that the CSP stores all copies that are agreed upon

in the service contract, and these copies are intact. The authorized users can seamlessly

access the copies received from the CSP. The PB-PMDP scheme supports public verifiability.

• We justify the performance of the proposed PB-PMDP scheme through theoretical analysis,

experimental results on Amazon cloud platform, and comparison with the MR-PDP model

[12]. Moreover, we discuss a slight modification of the proposed PB-PMDP scheme to

identify corrupted copies.

• We show the security of our scheme against colluding servers.

Paper organization. The remainder of the paper is organized as follow. Section 2 contains

related work. Section 3 presents a basic provable multi-copy data possession, and a review of

the MR-PDP scheme [12]. Our system and assumptions are presented in Section 4. Section 5

highlights our security model. The proposed scheme is elaborated in Section 6. The performance

analysis is shown in Section 7. Section 8 presents the implementation and experimental results

on Amazon cloud platform. How to identify the corrupted copies is discussed in Section 9.

Concluding remarks are given in Section 10.

2 RELATED CONCEPTS

2.1 Single-Copy PDP Schemes

The key purpose of PDP schemes is to validate the integrity of data outsourced to remote

servers. In PDP schemes, a verifier is allowed to efficiently, periodically, and securely validate

that a remote server – which supposedly stores the owner’s potentially very large amount of

data – is actually storing the data in its original form. A simple solution to tackle the problem of

data integrity over remote servers is by fragmenting the data file F into blocks {b1, b2, . . . , bm},

computing a message authentication code (MAC) σj for each block bj : σj = MACsk(j||bj)1≤j≤m,

sending both the data file F and the MACs {σj}1≤j≤m to the remote/cloud server, deleting the

local copy of the file, and storing only the secret key sk. During the verification process, a verifier

4

requests for a set of randomly selected blocks and their corresponding MACs, re-computes

the MAC of each retrieved block using sk, and compares the re-computed MACs with the

received values from the remote server [4]. This approach suffers from a severe drawback; the

communication complexity is linear with the queried data size, which is impractical especially

when the available bandwidth is limited.

For efficient validation of outsourced data integrity, a number of PDP protocols have been

proposed in the recent past [3]–[11], which focus on a single copy of the file and provide no proof

that the CSP stores multiple copies of the owner’s file (more details on various PDP schemes

can be found in our technical report [13]). Curtmola et al. [12] were the first to address the

integrity of multiple data copies outsourced to remote servers. The MR-PDP scheme of [12] is

based on the single-copy PDP model of [3].

Ateniese et al. [3] introduced an RSA-based PDP model in which the data owner fragments

the file F into blocks {b1, b2, . . . , bm}, and generates a tag for each block to be used later for

verification purposes. The file and the tags are sent to be stored on remote servers. The scheme

presented in [3] provides probabilistic guarantee of data possession, where the verifier checks

for a random subset of file blocks with each challenge (spot checking).

In their work, Ateniese et al. [3] differentiate between the concept of public verifiability

and private verifiability. In public verifiability, anyone who knows the owner’s public key can

challenge the remote server and verify that the server is still possessing the owner’s files. On

the other hand, private verifiability allows only the original owner to perform the auditing

task. Two main schemes are presented in [3]: sampling PDP (S-PDP) and efficient PDP (E-PDP)

schemes. The E-PDP model provides a weaker guarantee of data possession; it guarantees

possession of the sum of file blocks being challenged and not necessarily possession of each

one of these blocks.

2.2 Proof of Retrievability and Data Redundancy

Proof of retrievability (POR) is a complementary approach to PDP, and is stronger than PDP

in the sense that the verifier can reconstruct the entire data file from the responses that are

reliably transmitted from the server. This is due to encoding of the data file, for example using

erasure codes, before outsourcing to remote servers. Various POR schemes can be found in the

literature, for example [14]–[19].

Data redundancy can be achieved using replication or coding schemes, where the former is

the simplest way that can be adopted by many storage systems. For a data file with size |F |

bits, the storage cost for n copies over cloud servers is n|F | bits. In erasure codes, the file is

divided into m blocks and encoded into ` blocks, where ` > m [20]. The encoded blocks are

5

stored at ` different servers (one code block per server to prevent simultaneous failure of all

blocks), and thus the storage cost is |F |m ` bits. The original file can be reconstructed from any

m out of the ` servers.

In the context of this work, we are considering economically-motivated CSPs that may

attempt to use less storage than required by the service contract through deletion of a few

copies of the file. The CSPs have almost no financial benefit by deleting only a small portion of

a copy of the file. Redundancy using erasure codes has less storage cost; however, duplicating

data file across multiple servers achieves scalability in the sense that if the number of users

grows, then with more copies of data the user access time can be kept below a certain threshold.

Such scalability is a fundamental customer requirement in cloud computing systems. A file

that is duplicated and stored strategically on multiple servers – located at various geographic

locations – can help reduce access time and communication cost for users. On the other hand, in

responding to a data access request for coding-based systems, the CSP has to access at least m

servers to reconstruct the original data file, and thus increased time overhead (network latency

and computation time to decode data blocks) occurs at the CSP side.

More importantly, in case of data corruption, erasure codes require the precise identification

of failed/corrupted blocks. Without the ability to identify which blocks have been corrupted,

there is potentially a factorial combination of blocks to try to reconstruct the original data file;

that is
(
n
`

)
. For replication-based systems, a server’s copy can be reconstructed even from a

complete damage using duplicated copies on other servers. As a result of the aforementioned

reasons, in our work we do not apply erasure codes to the data file before outsourcing.

3 PROVABLE MULTI-COPY DATA POSSESSION SCHEMES

In this section, we consider the case of provable possession for multiple data copies, for which

we start with a basic provable multi-copy data possession scheme followed by a review of the

MR-PDP scheme of [12].

3.1 Basic Provable Multi-Copy Data Possession Scheme

Suppose that a CSP offers to store n copies of an owner’s file on different servers for pre-

specified fees according to the used storage space. Thus, the data owner needs a strong evidence

to ensure that the CSP is actually storing no less than n copies, all these copies are complete

and correct, and the owner is not paying for a service that he does not get. A straightforward

solution to this problem is to use a single-copy PDP scheme to separately challenge and verify

the integrity of each copy on each server. This is not a workable solution, since the CSP can

convince the data owner that n copies of the file are stored, while there is only one copy.

6

Whenever a request for a PDP scheme execution is made to one of the n severs, it is forwarded

to the server which actually possesses the stored copy. The core of this cheating is that the n

copies are identical making it trivial for the CSP to deceive the owner. Therefore, a step towards

the solution is to leave the control of the file copying operation in the owner’s hand to create

unique differentiable copies.

In the basic provable multi-copy data possession scheme, the data owner creates n distinct

copies by encrypting the file under n different keys. Hence, the CSP cannot use one copy

to answer the challenges for another. This natural solution enables the verifier to separately

challenge each copy on the remote servers, and ensure that the CSP is possessing not less than

n copies.

Although the above basic scheme is a workable solution, it is impractical and has the

following drawbacks:

• Data access and key management are serious problems with the basic scheme. Since the file

is encrypted under n different keys, the owner has to keep these keys secret from the

CSP, and share the n keys with each authorized user for each data file. Moreover, when

an authorized user interacts with the CSP to retrieve the data file, it is not necessarily to

receive the same copy each time. According to the load balancing mechanism used by the

CSP to organize the work of the servers, the authorized user’s request is directed to the

server with the lowest congestion. Consequently, each copy should contain some indicator

about its encryption key to enable the authorized user to properly decrypt and access the

received copy.

• The computation and communication complexities of the verification task are linear with

the number of copies.

3.2 Multiple-Replica Provable Data Possession Scheme

The MR-PDP scheme of [12] is based on the PDP model of [3]. In [12] distinct copies of a data

files are created by first encrypting the file using one key, then masking the encrypted version

(n times) with different randomness generated from a pseudo-random function.

Initially, a file F is fragmented into blocks {bj}1≤j≤m. The owner encrypts F using a key

K to obtain an encrypted version F̃ = {b̃j}1≤j≤m, where b̃j = EK(bj). The owner generates n

distinct copies {F̂i}1≤i≤n, where F̂i = {b̂ij}1≤j≤m, b̂ij = b̃j + rij (added as large integers in Z),

and rij = fx(i||j). fx is a pseudo-random function keyed with a secret key x. Fig. 1 gives a

summary of the MR-PDP scheme.

In the MR-PDP scheme, if an authorized user interacts with the CSP to access an owner’s

file, the CSP retrieves one of the available copies. Upon receiving this copy, the authorized user

7

Setup

− N = ṕq́ is the RSA modulus (ṕ & q́ are prime numbers)

− ǵ is a generator of QRN (QRN is the set of quadratic residues modulo N)

− Public key pk = (N, ǵ, e), secret key sk = (d, v, x), v, x ∈R ZN , and ed ≡ 1 mod (ṕ−1)(q́−1)

− πk is a pseudo-random permutation keyed with a key k, fx is a pseudo-random function

keyed with the secret key x, and H is a hash function (H : {0, 1}∗ → QRN)

− File F = {bj}1≤j≤m, and EK is an encryption algorithm under a key K

Data Owner

− Encrypts the data file F under the key K to obtain an encrypted version F̃ = {b̃j}1≤j≤m,

where b̃j = EK(bj)

− Uses the encrypted version F̃ to create a set of tags {Tj}1≤j≤m for all copies:

Tj = (H(v||j) · ǵb̃j)d mod N

− Generates n distinct copies {F̂i}1≤i≤n, F̂i = {b̂ij}1≤j≤m utilizing random masking:

aaafor i = 1 to n do

aaaaafor j = 1 to m do

aaaaaaa1. Computes a random value rij = fx(i||j)

aaaaaaa2. Computes the replica’s block b̂ij = b̃j + rij (added as large integers in Z)

− Sends the copy F̂i to a server Si, i : 1→ n

Checking possession of a replica F̂z

Owner Remote Server Sz

1. Picks a key k for the function π, c (# of blocks to be challenged),

aaand ǵs = ǵs mod N (s ∈R ZN)

a
c, k, ǵs−−−−−−−−−−−−−−−→

a 2. Computes a set A of random indices:

a A = {j} = πk(l)1≤l≤c

a 3. Computes T =
∏
j∈A

Tj mod N

a 4. Computes ρ = ǵ
∑
j∈A b̂zj

s mod N

a
T, ρ←−−−−−−−−−−−−−−−−−−

5. Computes A = {j} = πk(l)1≤l≤c

6. Checks (T e∏
j∈A

H(v||j)
· ǵrchal)s ?

= ρ, where rchal =
∑
j∈A

rzj

Fig. 1: The MR-PDP scheme by Curtmola et al. [12].

8

has to know the copy index to properly unmask it before decryption. Due to the opaqueness of

the internal operations of the CSP, the authorized users cannot recognize which copy has been

received. If i (the copy index) is attached with each copy forming the structure (i||F̂i), corrupting

or swapping copy indices hinder the correct unmasking process. Thus, the authorized users

are unable to access the data file.

For verification purposes, portion of the set {rij} is needed to be generated (rchal =
∑
j∈A rzj

in Fig. 1). These random values cannot be publicly known, otherwise the CSP can derive the

encrypted version F̃ , and store only one copy. Hence, only private verifiability is supported.

4 OUR SYSTEM AND ASSUMPTIONS

System components. The cloud computing storage model considered in this work consists

of three main components as illustrated in Fig. 2: (i) a data owner that can be an individual

or an organization originally possessing sensitive data to be stored in the cloud; (ii) a CSP

who manages cloud servers and provides paid storage space on its infrastructure to store the

owner’s files; and (iii) authorized users – a set of owner’s clients who have the right to access

the remote data.

Fig. 2: Cloud computing data storage system model.

The storage model used in this work can be adopted by many practical applications. For

example, e-Health applications can be envisioned by this model where the patients’ database

that contains large and sensitive information can be stored on cloud servers. In these types of

applications, the e-Health organization can be considered as the data owner, and the physicians

as the authorized users who have the right to access the patients’ medical history. Many other

practical applications like financial, scientific, and educational applications can be viewed in

similar settings.

In this work, we focus on sensitive archived and warehoused data, which is essential in many

applications such as digital libraries and astronomical/medical/scientific/legal repositories.

9

Such data are subject to infrequent change, so we treat them as static.

Outsourcing and accessing. The data owner has a file F consisting of m blocks and the CSP

offers to store n copies {F̃1, F̃2, . . . , F̃n} of the owner’s file on different servers – to prevent

simultaneous failure of all copies – in exchange for pre-specified fees metered in GB/month.

The number of copies depends on the nature of data; more copies are needed for critical data

that cannot easily be reproduced, and to achieve a higher level of scalability. This critical data

should be replicated on multiple servers across multiple data centers. On the other hand, non-

critical, reproducible data are stored at reduced levels of redundancy. The CSP pricing model

is related to the number of data copies.

For data confidentiality, the owner encrypts his data before outsourcing to the CSP. An

authorized user of the outsourced data sends a data-access request to the CSP and receives

a file copy in an encrypted form that can be decrypted using a secret key shared with the

owner. According to the load balancing mechanism used by the CSP to organize the work of

the servers, the data-access request is directed to the server with the lowest congestion, and

thus the authorized user is not aware of which copy has been received.

We assume that the interaction between the owner and the authorized users to authenticate

their identities and share the secret key has already been completed, and it is not considered in

this work. Throughout this paper, the terms cloud server and cloud service provider are used

interchangeably.

Threat model. The completeness and correctness of customers’ data in the cloud may be at risk

due to the following reasons. First, the CSP – whose goal is likely to make a profit and maintain

a reputation – has an incentive to hide data loss (due to hardware failure, management errors,

various attacks) or reclaim storage by discarding data that has not been or is rarely accessed.

Second, a dishonest CSP may store fewer copies than what has been agreed upon in the service

contact with the data owner, and try to convince the owner that all copies are correctly stored

intact. Third, the cloud infrastructures are subject to a wide range of internal and external

security threats. Incidences of security breaches of cloud services surface from time to time

[21], [22]. In short, although outsourcing data to the cloud is attractive from the view point of

cost and complexity of long-term large-scale data storage, it does not offer sufficient guarantee

on data integrity. This problem, if not properly handled, may hinder the successful deployment

and wide acceptance of the cloud paradigm. The goal of the proposed scheme is to detect (with

high probability) the CSP misbehavior by validating the number and integrity of file copies.

Underlying algorithms. The proposed scheme consists of five polynomial time algorithms:

10

KeyGen, CopyGen, TagGen, Prove, and Verify.

− (pk, sk)← KeyGen(1κ). This algorithm is run by the data owner. It takes as input a security

parameter 1κ, and returns a public key pk (publicly known) and a private key sk (kept

secret by the owner).

− F̃← CopyGen(CNi, F)1≤i≤n. This algorithm is run by the data owner. It takes as input a

copy number CNi and a file F , and generates n copies F̃ = {F̃i}1≤i≤n. The owner sends

the copies F̃ to the CSP to be stored on cloud servers.

− Φ← TagGen(sk, F̃). This algorithm is run by the data owner. It takes as input the private

key sk and the file copies F̃, and outputs tags/authenticators set Φ, which is an ordered

collection of tags for the data blocks. The owner sends Φ to the CSP to be stored along

with the copies F̃.

− P ← Prove(F̃,Φ, chal). This algorithm is run by the CSP. It takes as input the file copies

F̃, the tags set Φ, and a challenge chal (sent from a verifier). It returns a proof P, which

guarantees that the CSP is actually storing n copies and all these copies are intact.

− {1, 0} ← Verify(pk,P). This algorithm is run by a verifier (original owner or any other

trusted auditor). It takes as input the public key pk, and the proof P returned from the

CSP. The output is 1 if the integrity of all file copies is correctly verified or 0 otherwise.

5 SECURITY MODEL

Generally speaking, a remote data checking scheme is considered to be secure if (i) a polynomial-

time algorithm that can cheat the verifier and pass the auditing procedure with non-negligible

probability does not exist; and (ii) there exists a polynomial-time extractor that can repeatedly

execute the challenge response protocol until it extracts the original data file.

Following [14], we would like the remote data checking scheme to be correct and sound. These

two requirements are defined as follows:

• Correctness requires that the verifier accepts valid server responses.

• Soundness requires that any cheating server that passes the verification process is actually

storing the owner’s data intact.

The security of the proposed scheme can be stated using a ”game” that captures the data

possession property [3], [14]. The data possession game between an adversary A (acts as a

malicious CSP) and a challenger C (acts as a verifier) consists of the following:

• SETUP. C runs the KeyGen algorithm to generate a key pair (pk, sk), and sends pk to A.

• INTERACT. A interacts with C to get the file copies and the verification tags set Φ. A

adaptively selects a file F and sends it to C. C runs the two algorithms CopyGen and

11

TagGen to create n distinct copies F̃ along with the tags set Φ, and returns both F̃ and Φ

to A.

Moreover, A can request challenges {chali}1≤i≤L for some parameter L ≥ 1 of his choice,

and return proofs {Pi}1≤i≤L to C. C runs the Verify algorithm and provides the verification

results to A. The INTERACT step between A and C can be repeated polynomially-many

times.

• CHALLENGE. A decides on a file F previously used during the INTERACT step, requests a

challenge chal from C, and generates a proof P← Prove(F̃′,Φ, chal), where F̃′ is F̃ except

that at least one of its file copies (or a portion of it) is missing or tampered with. Upon

receiving the proof P, C runs the Verify algorithm and if Verify(pk,P) returns 1, then A has

won the game. The CHALLENGE step can be repeated polynomially-many times for the

purpose of data extraction.

The proposed scheme is secure if the probability that any polynomial-time adversary Awins the

game is negligible. In other words, if a polynomial-time adversary A can win the game with

non-negligible probability, then there exists a polynomial-time extractor that can repeatedly

execute the CHALLENGE step until it extracts the blocks of data copies.

File swapping attack. In this type of attacks, the remote server tries to prove the possession

of the data using blocks from different files. A remote data checking scheme must be secure

against such an attack.

6 PROPOSED PB-PMDP SCHEME

6.1 Overview and Rationale

Generating unique differentiable copies of the data file is the core to design a provable multi-

copy data possession scheme. Identical data copies enable the CSP to simply deceive the owner

by storing only one copy and pretending that it stores multiple copies. Using a simple yet

efficient way, the proposed scheme generates distinct copies utilizing the diffusion property

of any secure encryption scheme. The diffusion property ensures that the output bits of the

ciphertext depend on the input bits of the plaintext in a very complex way, i.e., there will

be an unpredictable complete change in the ciphertext, if there is a single bit change in the

plaintext [23]. The interaction between the authorized users and the CSP is considered through

this methodology of generating distinct copies, where the former can decrypt and access a

file copy received from the CSP. In the proposed scheme, the authorized users need only to

keep a single secret key – shared with the data owner – to decrypt the file copy, and it is not

necessarily to recognize the index of the received copy.

12

6.2 Notations

− F is a data file to be outsourced, and is composed of a sequence of m blocks, i.e., F =

{b1, b2, . . . , bm}.

− πkey(·) is a pseudo-random permutation (PRP): key × {0, 1}log2(m) → {0, 1}log2(m).

− ψkey(·) is a pseudo-random function (PRF): key × {0, 1}∗ → Zp (p is a prime number).

− Bilinear Map/Pairing. Let G1, G2, and GT be cyclic groups of prime order p. Let ḡ and g

be generators of G1 and G2, respectively. A bilinear pairing is a map ê : G1 × G2 → GT
with the following properties [24]:

1) Bilinear: ê(ua, vb) = ê(u, v)ab ∀ u ∈ G1, v ∈ G2, and a, b ∈ Zp(pisaprimenumber)

2) Non-degenerate: ê(ḡ, g) 6= 1

3) Computable: there exists an efficient algorithm for computing ê.

− H(·) is a map-to-point hash function : {0, 1}∗ → G1.

− EK is an encryption algorithm with strong diffusion property and a key K, e.g., AES.

Remark 1. Homomorphic linear authenticators (HLAs) [14], [18], [25] are basic building blocks

in the proposed scheme. Informally, the HLA is a tag computed by the owner for each data

block bj that enables a verifier to validate the data possession on remote servers by sending a

challenge vector chal of c elements: chal = {r1, r2, . . . , rc}. As a response, the servers can ho-

momorphically construct a tag authenticating the value
∑c
j=1 rj · bj . The response is validated

by a verifier, and accepted only if the servers honestly compute the response using the owner’s

file blocks. The proposed scheme utilizes the BLS (Boneh-Lynn-Shacham) HLAs [14].

6.3 PB-PMDP Procedural Steps

� Key Generation. As earlier, ê : G1×G2 → GT is a bilinear map and g is a generator of G2.

The data owner runs the KeyGen algorithm to generate a private key x ∈ Zp and a public

key y = gx ∈ G2 along with s elements (u1, u2, . . . , us) ∈R G1.

� Generation of Distinct Copies. The data owner runs the CopyGen algorithm to create n

differentiable copies F̃ = {F̃i}1≤i≤n. The copy F̃i is generated by concatenating a copy

number i with the file F , then encrypting using EK , i.e., F̃i = EK(i||F). F̃i is divided into

blocks {b̃ij}1≤j≤m, and the block b̃ij is further fragmented into s sectors {b̃ij1, b̃ij2, . . . , b̃ijs},

i.e., the copy F̃i = {b̃ijk}1≤j≤m
1≤k≤s

, where each sector b̃ijk ∈ Zp for some large prime p.

The authorized users need to keep only a single secret key K. Later, when an authorized

user receives a file copy from the CSP, he decrypts the copy and removes the index from

the copy header to reconstruct the plain form of the received file copy.

13

� Generation of Tags. Given the distinct file copies F̃ = {F̃i}, where F̃i = {b̃ijk}, the

data owner runs the TagGen algorithm to generate a tag σij for each block b̃ij as σij =

(H(IDF ||j).
s∏

k=1

u
b̃ijk
k)x ∈ G1 (i : 1 → n, j : 1 → m, k : 1 → s). In the tag computation,

IDF = Filename||n||m||u1|| . . . ||us is a unique fingerprint for each file F comprising the

file name, the number of copies for this file, the number of blocks per copy, and the

random values {uk}1≤k≤s. Embedding the IDF into the block tag σij prevents the CSP

from cheating by using blocks from different files (file swapping attack).

In order to reduce storage overhead on cloud servers and lower communication cost, the

data owner generates an aggregated tag σj for the blocks at the same indices in each copy

F̃i as σj =
∏n
i=1 σij ∈ G1. Hence, instead of storing mn tags, the proposed PB-PMDP

scheme requires the CSP to store only m tags for the files copies F̃. Let us denote the set

of aggregated tags as Φ = {σj}1≤j≤m. The data owner sends {F̃,Φ, IDF } to the CSP, and

deletes the copies and the tags from its local storage.

� Challenge. For challenging the CSP and validating the integrity of all copies, the verifier

sends c (# of blocks to be challenged) and two fresh keys at each challenge: a PRP(π) key

k1 and a PRF(ψ) key k2. Both the verifier and the CSP use π keyed with k1 and the ψ keyed

with k2 to generate a set Q = {(j, rj)} of c pairs of random indices and random values,

where {j} = πk1
(l)1≤l≤c and {rj} = ψk2

(l)1≤l≤c.

� Response. The CSP runs the Prove algorithm to generate a set Q = {(j, rj)} of random

indices and values, and provide an evidence that the CSP is still correctly possessing the

n copies. The CSP responds with a proof P = {σ, µ}, where

σ =
∏

(j,rj)∈Q

σ
rj
j ∈ G1, µ = {µik}1≤i≤n

1≤k≤s
, and µik =

∑
(j,rj)∈Q

rj · b̃ijk ∈ Zp.

� Verify Response. Upon receiving the proof P = {σ, µ} from the CSP, the verifier runs the

Verify algorithm to check the following verification equation:

ê(σ, g)
?
= ê([

∏
(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u
∑n
i=1 µik

k , y). (1)

In equation (1), the term
∑n
i=1 µik is linear in n, while the term [·]n costs one more

exponentiation for any value of n. If the verification equation passes, the Verify algorithm

returns 1, otherwise 0. The correctness of verification equation (1) can be shown as follows:

ê(σ, g) = ê(
∏

(j,rj)∈Q

σ
rj
j , g)

14

= ê(
∏

(j,rj)∈Q

[

n∏
i=1

σij]
rj , g)

= ê(
∏

(j,rj)∈Q

[

n∏
i=1

(H(IDF ||j) ·
s∏

k=1

u
b̃ijk
k)x]rj , g)

= ê(
∏

(j,rj)∈Q

[

n∏
i=1

H(IDF ||j) ·
n∏
i=1

s∏
k=1

u
b̃ijk
k]rj , y)

= ê(
∏

(j,rj)∈Q

n∏
i=1

H(IDF ||j)rj ·
∏

(j,rj)∈Q

n∏
i=1

s∏
k=1

u
rj ·b̃ijk
k , y)

= ê([
∏

(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u

∑n
i=1

∑
(j,rj)∈Q rj ·b̃ijk

k , y)

= ê([
∏

(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u
∑n
i=1 µik

k , y).

Remark 2. The proposed PB-PMDP scheme supports public verifiability where anyone, who

knows the owner’s public key but is not necessarily the data owner, can send a challenge

vector to the CSP and verify the response. Public verifiability can resolve disputes that may

arise between the data owner and the CSP regarding data integrity. If such a dispute occurs,

a trusted third party auditor (TPA) can determine whether the data integrity is maintained or

not. Since the owner’s public key is only needed to perform the verification step, the owner is

not required to reveal his secret key to the TPA. The PB-PMDP scheme is presented in Fig. 3,

and the security analysis is given in Appendix A.

6.4 Reducing the Communication Cost

One can attempt to change the PB-PMDP scheme to reduce the communication cost by a

factor of n by permitting the CSP to compute and send µ = {µ̂k}1≤k≤s, where µ̂k =
∑n
i=1 µik.

However, this modification enables the CSP to simply cheat the verifier as follows:

µ̂k =

n∑
i=1

µik =

n∑
i=1

∑
(j,rj)∈Q

rj · b̃ijk =
∑

(j,rj)∈Q

rj ·
n∑
i=1

b̃ijk.

Thus, the CSP can just keep the sectors summation
∑n
i=1 b̃ijk not the sectors themselves.

Moreover, the CSP can corrupt the block sectors and the summation is still valid. Therefore,

the proposed scheme requires the CSP to send µ = {µik}1≤i≤n
1≤k≤s

, and the summation
∑n
i=1µik is

done on the verifier side.

A slightly modified version of the PB-PMDP scheme can reduce the communication cost by a

factor of s during the response phase by allowing the CSP to compute and send µ = {µi}1≤i≤n

15

Setup

− File F = {b1, b2, . . . , bm}.

− ê : G1 × G2 → GT is a bilinear map, g is a generator for G2, x ∈ Zp is a private key, and

y = gx ∈ G2 along with (u1, u2, . . . , us) ∈R G1 form a public key.

Data Owner

− Creates distinct file copies F̃ = {F̃i}1≤i≤n , where F̃i = EK(i||F)1≤i≤n. Each copy F̃i is an

ordered collection of blocks fragmented into sectors, i.e., F̃i = {b̃ijk}1≤j≤m
1≤k≤s

, where b̃ijk ∈ Zp.

− Calculates the block tag σij = (H(IDF ||j).
s∏

k=1

u
b̃ijk
k)x ∈ G1.

− Computes a set of aggregated tags Φ = {σj}1≤j≤m for the blocks at the same indices in

each copy F̃i, where σj =

n∏
i=1

σij ∈ G1.

− Sends {F̃,Φ, IDF } to the CSP and deletes the copies and the tags from its local storage.

Challenge Response

Verifier CSP

1) Picks c (# of blocks to be challenged)

and two fresh keys k1 and k2

2) Generates a set Q = {(j, rj)},

{j} = πk1
(l)1≤l≤c and {rj} = ψk2

(l)1≤l≤c

c, k1, k2−−−−−−−−−−−−−−−−−−→

a 3) Generates a set Q as the verifier did

a 4) Computes σ =
∏

(j,rj)∈Q

σ
rj
j ∈ G1

a 5) Computes µ = {µik}1≤i≤n
1≤k≤s

,

a µik =
∑

(j,rj)∈Q

rj · b̃ijk ∈ Zp

a

σ, µ={µik}1≤i≤n
1≤k≤s←−−−−−−−−−−−−−−−−−−−−−−

6) Checks ê(σ, g)
?
= ê([

∏
(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u
∑n
i=1 µik

k , y)

Fig. 3: The proposed PB-PMDP scheme.

instead of µ = {µik}1≤i≤n
1≤k≤s

. In this version, a file copy F̃i is divided into blocks, but the blocks

are not fragmented into sectors, i.e., a copy F̃i = {b̃ij}1≤j≤m, where b̃ij ∈ Zp . A tag σij is

generated for each block b̃ij : σij = (H(IDF ||j).ub̃ij)x ∈ G1, where u is a generator for G1.

16

Tags are aggregated into a set Φ = {σj}1≤j≤m, where σj =
∏n
i=1 σij . In this scenario, the CSP

responds with σ =
∏

(j,rj)∈Q σ
rj
j ∈ G1 and µ = {µi}1≤i≤n, where µi =

∑
(j,rj)∈Q rj · b̃ij ∈ Zp. The

verification equation (1) will be modified to ê(σ, g)
?
= ê([

∏
(j,rj)∈QH(IDF ||j)rj]n · u

∑n
i=1 µi , y).

This reduced communication cost will be at the expense of increased storage overhead on the

CSP side, where each block b̃ij ∈ Zp will be accompanied with a tag σij ∈ G1 of equal length.

If the block size is greater than |p| (the bit length of the prime p), the CSP can simply cheat by

storing b̃ij mod p instead of the whole block b̃ij . Therefore, with this slightly modified version,

to store n copies each of size |F | bits, the total storage over the CSP will be (n + 1)|F | bits

(using tag aggregation approach). The storage overhead equals the size of a complete file copy.

The more storage space is used over the CSP side, the more fees the customers are charged

(pay-as-you-go pricing model).

7 PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the presented schemes: MR-PDP and PB-PMDP.

The file F used in our performance analysis is of size 64MB divided in blocks of 4KB. Without

loss of generality, we assume that the desired security level is 80-bit. Thus, we utilize an

elliptic curve defined over Galois field GF (p) with |p| = 160 bits (a point on this curve can be

represented by 161 bits using compressed representation [26]), and the size of the RSA modulus

N is 1024 bits.

Similar to [7], [27], the computation cost for the MR-PDP and PB-PMDP is estimated in terms

of used cryptographic operations, which are notated in Table 1. G indicates a group of points

over a suitable elliptic curve in the bilinear pairing, and QRN is a set of quadratic residues

modulo N .

TABLE 1: Notation of cryptographic operations.

Notation Description Notation Description

HG Hashing to G HQRN Hashing to QRN

EG Exponentiation in G EZN Exponentiation in ZN

MG Multiplication in G MZ Multiplication in Z

MZp Multiplication in Zp DZ Division in Z

AZp Addition in Zp AZ Addition in Z

P Bilinear pairing EK Encryption using K

R Random-number generation

To perform a fair comparison between the PB-PMDP and the MR-PDP [12], we assume two

small modifications to the model presented in [12]. First, we assume that the indices of the

17

blocks being challenged are the same across all copies (this assumption is an optimization for the

verification computations of the MR-PDP). Second, for the CSP to prove the possession of the

blocks (not just only their sum), each block being challenged is multiplied by a random value.

The second modification makes the S-PDP version of [3] to be the base of the MR-PDP scheme.

Let n, m, and s denote the number of copies, the number of blocks per copy, and the number

of sectors per block, respectively. Let c denote the number of blocks to be challenged, and |F |

denote the size of the file copy. Let the keys used with π and ψ be of size 128 bits. Table 2

presents a theoretical analysis for the setup, storage, communication, and computation costs of

the two schemes.

TABLE 2: Storage, communication, and computation costs for MR-PDP and PB-PMDP schemes.

MR-PDP [12] PB-PMDP

System

Setup

Copies

Generation
EK + nmR+ nmAZ nEK

Tags

Generation
2m EZN +mMZ + mHQRN (s+ 1)nm EG + (ns+n - 1)mMG+nmHG

Storage
File Copies n|F | n|F |

CSP

Overhead
1024m bits 161m bits

Communication

Cost

Challenge 1280 + log2(c) bits 256 + log2(c) bits

Response 1024(n+ 1) bits † 161 + 160ns bits

Computation

Cost

Proof (c+n) EZN + (cn+ c - 1)MZ + (c - 1)nAZ c EG + (c - 1)MG + csnMZp+ (c - 1)snAZp

Verification
(2n+ c+ 1) EZN + (cn+ c+n - 1)MZ 2P + (c+ s+ 1) EG + (c+ s - 1)MG

+(c - 1)nAZ + cHQRN + DZ + (n - 1)sAZp + cHG

† There is an optimization for this response to be 1024 + 160n bits using hashing.

7.1 Comments

Sytem Setup. As it can be seen in Table 2, the cost of generating data copies in the proposed

PB-PMDP scheme is much less than that of the MR-PDP scheme. On the other hand, Curtmola

et al. [12] efficiently reduce the computation cost of generating the block tags. This is due to

the fact that the tags are generated from the encrypted version of the file before masking with

some unique randomness to generate the differentiable copies. In general, the impact of setup

computations on the overall system performance may be insignificant; setup is done only once

during the life time of the data storage system, which may be for tens of years.

Storage overhead. Storage overhead is the additional space used to store necessary information

18

other than the outsourced file copies F̃. Both schemes require n|F | bits to store F̃, while the

storage overhead for the PB-PMDP scheme is much less than that of the MR-PDP model. The

overheads on the CSP are 2MB and 0.31MB for the MR-PDP and PB-PMDP schemes, respec-

tively (about 84% reduction). Reducing the storage overhead on the CSP side is economically

a key feature to lower the fees paid by the customers.

Communication cost. The communication cost of the MR-PDP scheme is less than that of PB-

PMDP. For 20 copies of F , the communication costs for the MR-PDP and PB-PMDP schemes

are about 2.8KB and 80KB, respectively. However, for small s (� n), the PB-PMDP will have

less communication cost.

Computation cost. As observed from Table 2, the cost expression of the proof for the MR-PDP

scheme has three terms linear in the number of copies n, while the PB-PMDP scheme has two

terms linear in n. Moreover, there are three terms linear in n in the verification cost expression

for the MR-PDP scheme, while the PB-PMDP scheme contains only one term linear in n in the

corresponding expression. These terms affect the total computation time when dealing with

a large number of copies in practical applications. We note that since the cost of an addition

is negligibly smaller than those of pairing and exponentiation, the verification time in the

proposed PB-PMDP scheme is practically not affected by the value of n.

8 IMPLEMENTATION AND EXPERIMENTAL EVALUATION

8.1 Implementation

We have implemented the MR-PDP and PB-PMDP schemes on Amazon Elastic Compute Cloud

(Amazon EC2) [28] and Amazon Simple Storage Service (Amazon S3) [29] cloud platforms.

Amazon EC2 is a web service that enables customers to lunch and manage Linux/Unix and

Windows server instances (virtual servers) in Amazon’s data centers. Customers can automat-

ically scale up and down the number of EC2 instances according to their demands. Moreover,

customers can upgrade and downgrade a specific EC2 instance to fit current requirements.

Amazon S3 is storage for the Internet. It provides a simple web services interface that can be

used to store and retrieve almost unlimited amount of data. Customers are allowed to choose

the geographic locations where Amazon S3 will store the data.

Our implementation of the presented schemes consists of three modules: OModule (owner

module), CModule (CSP module), and VModule (verifier module). OModule, which runs on

the owner side, is a library that includes KeyGen, CopyGen, and TagGen algorithms. CModule

is a library that runs on Amazon EC2 and includes Prove algorithm. VModule is a library to

be run at the verifier side and includes the Verify algorithm.

19

In the experiments, we do not consider the system pre-processing time to prepare the different

file copies and generate the tags set. Moreover, the time to access the file blocks is not considered

in the implementation, as the state-of-the-art hard drive technology allows as much as 1MB to

be read in just few nanoseconds [7]. Hence, the total access time is unlikely to have substantial

impact on the overall system performance.

Implementation settings. In our implementation we use a ”large” Amazon EC2 instance to run

CModule. This instance type provides total memory of size 7.5GB and 4 EC2 Compute Units (2

virtual cores with 2 EC2 Compute Units each). One EC2 Compute Unit provides the equivalent

CPU capacity of a 1.0 - 1.2GHz 2007 Opteron or 2007 Xeon processor [30]. The OModule and

VModule are executed on a desktop computer with Intel(R) Xeon(R) 2GHz processor and 3GB

RAM running Windows XP. We outsource copies of a data file of size 64MB to Amazon S3.

Algorithms (encryption, pairing, hashing, etc.) are implemented using MIRACL library version

5.4.2. In the experiments, we utilize the MNT curve [31] defined over prime field GF (p) with

|p| = 160 bits and embedding degree = 6 (the MNT curve with these parameters is provided

by the MIRACL library).

8.2 Experimental Evaluation

Timing measurements. The proposed PB-PMDP scheme is based on pairing and elliptic curve

cryptography, while the MR-PDP scheme is based on RSA. To estimate the timing measurements

for the cryptographic operations used in the implementations, we run the MIRACL library on

the the used desktop computer. Table 3 presents the measured times (in milliseconds), where

each reported measurement is an average of thousands of runs.

TABLE 3: Timing measurements for the cryptographic operations

Operation Time (ms) Operation Time (ms)

HG 0.22 HQRN 0.34

EG 0.27 EZN 68.92/2.15/0.32

MG 0.01 MZ 0.02/0.004/0.0009

MZp 0.00025 DZ 0.00022

AZp 0.00017 AZ 0.009/0.00029

P 4.6

Table 3 shows three measurements for EZN : 68.92 ms, 2.15 ms, and 0.32 ms. The reason is that

the exponent part differs during the implementation of the MR-PDP scheme. For example, the

data owner performs ǵEXP mod N , where EXP is the exponent part of size 4KB (32768 bits). The

20

owner does this operation during the tag generations and the verification phase. Utilizing the

Fermat-Euler theorem [32], the owner can reduce the exponent part, where ǵEXP ≡ ǵEXPmodφ(N)

mod N and φ(N) = (ṕ − 1)(q́ − 1) is the Euler’s totient function. On the other hand, the CSP

cannot use this trick because φ(N) is not known in public. Therefore, EZN needs 68.92 ms and

2.15 ms at the CSP and the owner, respectively. Besides, a random value of size 160 bits is

used in our slight modification to the MR-PDP scheme to prove the possession of the data

blocks not only their sum. Thus, EZN needs 0.32 ms when the exponent part is 160 bits. Similar

scenarios arise for MZ and AZ operations. MZ needs 0.02 ms for 32768-bits × 160-bits, 0.004

ms for 1024-bits × 1024-bits, and 0.0009 ms for 1024-bits × 160-bits. AZ needs 0.009 ms for

32768-bits + 32768-bits, and 0.00029 ms for 1024-bits + 1024-bits.

Experimental results. We compare the presented MR-PDP and PB-PMDP schemes in terms of

both the proof computation times and the verification times. It has been reported in [3] that if

the remote server is missing a fraction of the data, then the number of blocks that needs to be

checked in order to detect server misbehavior with high probability is constant independent

of the total number of file blocks. For example, if the server deletes 1% of the data file, the

verifier needs only to check for c = 460-randomly chosen blocks of the file so as to detect this

misbehavior with probability larger than 99%. Therefore, in our experiments, we use c = 460

to achieve a high probability of assurance.

For different number of copies, Figure 4a presents the proof computation times (in seconds).

The timing curve of the proposed PB-PMDP scheme is less than that of the MR-PDP scheme.

For 20 copies, the proof computation times for the MR-PDP and the PB-PMDP schemes are

1.68 and 0.86 seconds, respectively (about 49% reduction).

�

���

���

���

���

�

���

���

���

���

� �

P
ro
o
f
C
o
m
p
u
ta
ti
o
n
 T
im
e
s
 (
S
e
c
)

	
���

���	���

�� �� ��

of Copies

�

(a) CSP computation times (sec)

����

����

���

����

����

����

����

���

����

� 	

V
e
ri
fi
c
a
ti
o
n
 T
im
e
s
 (
S
e
c
)

��

�
��

�� �	 ��

of Copies

(b) Verifier computation times (sec)

Fig. 4: Computation costs of the MR-PDP and PB-PMDP.

Fig. 4b presents the verification times (in seconds). For 20 copies, the verification times for

the MR-PDP and the PB-PMDP schemes are 0.40 and 0.29 seconds, respectively (about 27%

21

reduction).

More importantly, the verification timing curve of the PB-PMDP scheme is almost unchanged

for the range of number of copies considered in our experiments. This is due to the fact that

although the term (n − 1)sAZp in the verification cost of the PB-PMDP scheme is linear in n

(Table 2), in our experiments its numerical value is quite small compared to those of the other

terms in the cost expression. This feature makes the the PB-PMDP scheme computationally

cost-effective and more efficient when verifying a large number of file copies.

9 IDENTIFYING CORRUPTED COPIES

Here we show how the proposed PB-PMDP scheme can be slightly modified to identify the

indices of corrupted copies. The proof P = {σ, µ} generated by the CSP will be valid and will

pass the verification equation (1) only if all copies are intact and consistent. Thus, when there is

one or more corrupted copies, the whole auditing procedure fails. To handle this situation and

identify the corrupted copies, a slightly modified version of the PB-PMDP scheme can be used.

In this version, the data owner generates a tag σij for each block b̃ij , but does not aggregate

the tags for the blocks at the same indices in different copies, i.e., Φ = {σij} 1≤i≤n
1≤j≤m

. During the

response phase, the CSP computes µ = {µik}1≤i≤n
1≤k≤s

as before, but σ =
∏

(j,rj)∈Q

[

n∏
i=1

σij]
rj ∈ G1.

Upon receiving the proof P = {σ, µ}, the verifier first validates P using equation (1). If the

verification fails, the verifier asks the CSP to send σ = {σi}1≤i≤n, where σi =
∏

(j,rj)∈Q σ
rj
ij .

Thus, the verifier has two lists σList = {σi}1≤i≤n and µList = {µik}1≤i≤n
1≤k≤s

(µList is a two

dimensional list).

Utilizing a recursive divide-and-conquer approach (binary search) [33], the verifier can iden-

tify the indices of corrupted copies. Specifically, σList and µList are divided into halves: σList→

(σLeft:σRight), and µList→ (µLeft:µRight). The verification equation (1) is applied recursively

on σLeft with µLeft and σRight with µRight. Note that the individual tags in σLeft or σRight are

aggregated via multiplication to generate one σ that is used during the recursive application of

equation (1). The procedural steps of identifying the indices of corrupted copies are indicated

in Algorithm 1.

The binary search algorithm takes four parameters: σList, µList, start that indicates the start

index of the currently working lists, and end to indicate the last index of the working lists.

The initial call to the search algorithm takes (σList, µList, 1, n). The invalid indices are stored

in invalidList, which is a global data structure.

This slight modification to identify the corrupted copies will be associated with some extra

storage overhead on the cloud servers, where the CSP has to store mn tags for the file copies F̃

22

Algorithm 1: BS(σList, µList, start, end)

begin

len←− (end−start)+1 /* The list length */

if len = 1 then

σ ←− σList[start]

{µk}1≤k≤s ←− µList[start][k]

ê(σ, g)
?
= ê(

∏
(j,rj)∈QH(IDF ||j)rj ·

∏s
k=1 u

µk
k , y)

if NOT verified then

invalidList.Add(start)

end

else

σ ←−
∏len
i=1 σList[start+i− 1]

{µik}1≤i≤len
1≤k≤s

←− µList[start+i− 1][k]

ê(σ, g)
?
= ê([

∏
(j,rj)∈QH(IDF ||j)rj]len ·

∏s
k=1 u

∑len
i=1 µik

k , y)

if NOT verified then

/* work with the left and right halves of σList and µList */

mid←− b(start+end)/2c /* List middle */

BS(σList, µList, start, mid) /* Left part */

BS(σList, µList, mid+1, end) /* Right part */

end

end

end

(m tags in the original version). Moreover, the challenge-response phase may be done in two

rounds if the initial round to verify all copies fails.

We have performed experiments to show the effect of identifying the corrupted copies on the

verification time. We generate 100 copies, which are verified in 0.3 seconds when all copies are

accurate. A percentage – ranging from 1% to 20% – of the file copies is randomly corrupt. Fig. 5

shows the verification time (in seconds) with different corrupted percentages. The verification

time is about 3.87 seconds when 1% of the copies are invalid. As observed from Fig. 5, when

the percentages of corrupted copies are up to 15% of the total copies, the performance of using

the binary search algorithm in the verification is more efficient than individual verification for

each copy. It takes about 0.29 seconds to verify one copy, and thus individual verifications of

23

100 copies requires 100×0.29 = 29 seconds.

�

�

��

��

��

��

��

��

�� ��

V
e
ri
fi
c
a
ti
o
n
 T
im
e
s
 (
S
e
c
)

Corru

��� ��� ���

upted Percentages

��	
�������������	���

�
�	�	��������	�	���	�

Fig. 5: Verification times with different percentages of corrupted copies.

In short, the proposed PB-PMDP scheme can be slightly modified to support the feature

of identifying the corrupted copies at the cost of some extra storage, communication, and

computation overheads. For the CSP to remain in business and maintain a good reputation,

invalid responses to verifier’s challenges are sent in very rare situations, and thus the original

version of the proposed scheme is used in most of the time.

10 SUMMARY AND CONCLUDING REMARKS

In this work we have studied the problem of creating multiple copies of a data file and verifying

those copies stored on cloud servers. We have proposed a pairing-based provable multi-copy

data possession (PB-PMDP) scheme, which supports outsourcing of multiple data copies to

untrusted CSP. The interaction between the authorized users and the CSP is considered in

our scheme, where the authorized users can seamlessly access a data copy received from the

CSP using a single secret key shared with the data owner. Moreover, the BP-PMDP scheme

supports public verifiability, allows unlimited number of auditing, and provides possession-free

verification where the verifier has the ability to verify the data integrity even though he neither

possesses nor retrieves the file blocks from the server.

Through theoretical analysis, experimental results, and comparison with the previously pro-

posed MR-PDP scheme, we have showed the improved performance of the proposed scheme.

The verification time of PB-PMDP is practically independent of the number of file copies,

which makes the scheme computationally cost-effective and more efficient when verifying a

large number of file copies.

24

A slight modification can be done on the proposed scheme to support the feature of iden-

tifying the indices of corrupted copies of data. The corrupted copy can be reconstructed even

from a complete damage using duplicated copies on other servers. Our analysis has shown

that the proposed PB-PMDP scheme is provably secure.

ACKNOWLEDGMENTS

This work was supported in part through an NSERC grant awarded to Prof. Hasan.

REFERENCES

[1] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and efficient access to outsourced data,” in CCSW ’09:

Proceedings of the 2009 ACM Workshop on Cloud Computing Security, New York,NY, USA, 2009, pp. 55–66.

[2] M. Xie, H. Wang, J. Yin, and X. Meng, “Integrity auditing of outsourced data,” in VLDB ’07: Proceedings of the

33rd International Conference on Very Large Databases, 2007, pp. 782–793.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable data possession

at untrusted stores,” in CCS ’07: Proceedings of the 14th ACM Conference on Computer and Communications Security,

New York, NY, USA, 2007, pp. 598–609.

[4] K. Zeng, “Publicly verifiable remote data integrity,” in Proceedings of the 10th International Conference on Information

and Communications Security, ser. ICICS ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 419–434.

[5] Y. Deswarte, J.-J. Quisquater, and A. Saı̈dane, “Remote integrity checking,” in 6th Working Conference on Integrity

and Internal Control in Information Systems (IICIS), S. J. L. Strous, Ed., 2003, pp. 1–11.

[6] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating data possession and uncheatable data transfer,” Cryptology

ePrint Archive, Report 2006/150, 2006.

[7] F. Sebé, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, and J.-J. Quisquater, “Efficient remote data possession

checking in critical information infrastructures,” IEEE Trans. on Knowl. and Data Eng., vol. 20, no. 8, 2008.

[8] P. Golle, S. Jarecki, and I. Mironov, “Cryptographic primitives enforcing communication and storage complexity,”

in FC’02: Proceedings of the 6th International Conference on Financial Cryptography, Berlin, Heidelberg, 2003, pp.

120–135.

[9] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, “Auditing to keep online storage services honest,” in

HOTOS’07: Proceedings of the 11th USENIX workshop on Hot topics in operating systems, Berkeley, CA, USA, 2007,

pp. 1–6.

[10] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving audit and extraction of digital contents,”

Cryptology ePrint Archive, Report 2008/186, 2008.

[11] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and integrity in outsourced databases,” Trans. Storage,

vol. 2, no. 2, 2006.

[12] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: multiple-replica provable data possession,” in 28th

IEEE ICDCS, 2008, pp. 411–420.

[13] A. F. Barsoum and M. A. Hasan, “Provable possession and replication of data over cloud servers,” Centre For

Applied Cryptographic Research (CACR), University of Waterloo, Report 2010/32, 2010, http://www.cacr.math.

uwaterloo.ca/techreports/2010/cacr2010-32.pdf.

[14] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proceedings of the 14th International Conference

on the Theory and Application of Cryptology and Information Security: Advances in Cryptology, ser. ASIACRYPT ’08.

Springer-Verlag, 2008, pp. 90–107.

25

[15] A. Juels and B. S. Kaliski, “PORs: Proofs of Retrievability for large files,” in CCS’07: Proceedings of the 14th ACM

conference on Computer and communications security. ACM, 2007, pp. 584–597.

[16] R. Curtmola, O. Khan, and R. Burns, “Robust remote data checking,” in StorageSS ’08: Proceedings of the 4th ACM

international workshop on Storage security and survivability. New York, NY, USA: ACM, 2008, pp. 63–68.

[17] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: theory and implementation,” in CCSW ’09:

Proceedings of the 2009 ACM workshop on Cloud computing security. New York, NY, USA: ACM, 2009, pp. 43–

54.

[18] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via hardness amplification,” in TCC ’09: Proceedings

of the 6th Theory of Cryptography Conference on Theory of Cryptography. Berlin, Heidelberg: Springer-Verlag, 2009,

pp. 109–127.

[19] K. D. Bowers, A. Juels, and A. Oprea, “Hail: a high-availability and integrity layer for cloud storage,” in CCS ’09:

Proceedings of the 16th ACM Conference on Computer and Communications Security, New York, NY, USA, 2009, pp.

187–198.

[20] M. K. Aguilera, R. Janakiraman, and L. Xu, “Using erasure codes efficiently for storage in a distributed system,”

in Proceedings of the 2005 International Conference on Dependable Systems and Networks, ser. DSN ’05. Washington,

DC, USA: IEEE Computer Society, 2005, pp. 336–345.

[21] N. Gohring, “Amazon’s S3 down for several hours,” Online at http://www.pcworld.com/businesscenter/article/

142549/amazons s3 down for severalhours.html, 2008.

[22] B. Krebs, “Payment processor breach may be largest ever,” Online at http://voices.washingtonpost.com/

securityfix/2009/01/payment processor breach may b.html, Jan. 2009.

[23] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.Tech. J., vol. 28, no. 4, 1949.

[24] A. Menezes, “An introduction to pairing-based cryptography,” Lecture Notes 2005, Online at http://www.math.

uwaterloo.ca/∼ajmeneze/publications/pairings.pdf.

[25] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from homomorphic identification protocols,” in ASIACRYPT

’09: Proceedings of the 15th International Conference on the Theory and Application of Cryptology and Information Security,

Berlin, Heidelberg, 2009, pp. 319–333.

[26] P. S. L. M. Barreto and M. Naehrig, “IEEE P1363.3 submission: Pairing-friendly elliptic curves of prime order with

embedding degree 12,” New Jersey: IEEE Standards Association, 2006.

[27] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient provable data possession,” in

SecureComm ’08: Proceedings of the 4th International Conference on Security and Privacy in Communication Netowrks,

New York, NY, USA, 2008, pp. 1–10.

[28] Amazon elastic compute cloud (Amazon EC2), http://aws.amazon.com/ec2/.

[29] Amazon simple storage service (Amazon S3), http://aws.amazon.com/s3/.

[30] Amazon EC2 Instance Types, http://aws.amazon.com/ec2/.

[31] A. Miyaji, M. Nakabayashi, and S. TAKANO, “New explicit conditions of elliptic curve traces for FR-reduction,”

IEICE Transactions on fundamental, pp. 1234–1243, 2001.

[32] S. Porubsk et al., “Fermat-Euler theorem in algebraic number fields,” Journal of Number Theory, vol. 60, no. 2, pp.

254–290, 1996.

[33] A. L. Ferrara, M. Green, S. Hohenberger, and M. Pedersen, “Practical short signature batch verification,” in The

Cryptographer’s Track at RSA Conference, 2009, pp. 309–324.

26

APPENDIX A

SECURITY ANALYSIS

Here we present the security analysis for the PB-PMDP scheme. First, in the proposed scheme,

we utilize PRP (π) and PRF (ψ) to compress the challenge, and thus reducing the communication

cost. Instead of sending the set Q of c pairs of random indices and values to the CSP, the verifier

sends only two keys k1 and k2 (over secure communication). Using π and ψ in this manner is

proved to be secure [25].

For the correctness security requirement, we have previously shown the correctness of equa-

tion (1)). For the soundness security requirement, we will show that if a polynomial-time adver-

sary A can win the data possession game (with non-negligible probability) with a challenger

C, then A is actually storing the n data copies F̃ in an uncorrupted state. For an adversary A

to cheat the verifier, he has to respond with a malicious proof P′ 6= P and Verify(pk,P′) returns

1.

The soundness of the PB-PMDP scheme is based on the unforgeability of the used HLAs,

which depends on the security of the computational Diffie-Hellman (CDH) and the discrete

logarithm (DL) problems.

Definitions.

1) CDH problem: given g, gx, h ∈ G for some group G and x ∈ Zp , compute hx

2) DL problem: given g, h ∈ G for some group G, find x such that h = gx .

The following theorem proves the unforgeability of the HLAs used in the proposed PB-PMDP

scheme. Our approach to prove the theorem is by investigating all possible combinations of

malicious CSP responses 〈{σ′, µ′}, {σ, µ′}, {σ′, µ}〉, and checking whether any of these combi-

nations can pass the verification equation (1).

Theorem 1. Assuming the hardness of both the CDH and the DL problems in bilinear groups, the

verifier of the proposed PB-PMDP scheme accepts a response to a challenge vector only if a correctly

computed proof P = {σ, µ}, where µ = {µik}1≤i≤n
1≤k≤s

is sent from the CSP.

Proof. We prove the theorem by contradiction. The goal of an adversary A (malicious CSP) is to

generate a response that is not correctly computed and pass the verification process done by a

challenger C (verifier). Let P′ = {σ′, µ′} be A’s response, where µ′ = {µ′ik}1≤i≤n
1≤k≤s

. Let P = {σ, µ}

be the expected response from an honest CSP, where σ =
∏

(j,rj)∈Q σ
rj
j , µ = {µik}1≤i≤n

1≤k≤s
, and

µik =
∑

(j,rj)∈Q rj · b̃ijk.

According to the correctness of PB-PMDP scheme, the expected proof P = {σ, µ} satisfies

27

the verification equation, i.e.,

ê(σ, g) = ê([
∏

(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u
∑n
i=1 µik

k , y).

Assume that σ′ 6= σ, and σ′ passes the verification equation, then we have

ê(σ′, g) = ê([
∏

(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u
∑n
i=1 µ

′
ik

k , y).

Obviously, if µ′ik = µik ∀(i, k), it follows from the above verification equations that σ′ = σ,

which contradicts our assumption. Let us define ∆µik = µ′ik − µik (1 ≤ i ≤ n, 1 ≤ k ≤ s). It

must be the case that at least one of {∆µik}1≤i≤n
1≤k≤s

is nonzero. Dividing the verification equation

for the malicious response by the verification equation for the expected response, we obtain

ê(σ′ · σ−1, g) = ê(

s∏
k=1

u
∑n
i=1 ∆µik

k , y)

ê(σ′ · σ−1, g) = ê(

s∏
k=1

u
x·
∑n
i=1 ∆µik

k , g)

σ′ · σ−1 =

s∏
k=1

u
x·
∑n
i=1 ∆µik

k .

We set uk = gαkhβk for αk, βk ∈ Zp, and thus

σ′ · σ−1 =

s∏
k=1

(gαkhβk)x·
∑n
i=1 ∆µik

σ′ · σ−1 =

s∏
k=1

(yαkhx.βk)
∑n
i=1 ∆µik

σ′ · σ−1 = y
∑s
k=1 αk·

∑n
i=1 ∆µik · hx·

∑s
k=1 βk·

∑n
i=1 ∆µik

hx = (σ′ · σ−1 · y−
∑s
k=1 αk·

∑n
i=1 ∆µik)

1∑s
k=1

βk·
∑n
i=1

∆µik .

Hence, we have found a solution to the CDH problem unless evaluating the exponent causes a

division by zero. However, we noted that not all of {∆µik}1≤i≤n
1≤k≤s

can be zero and the probability

that βk = 0 is 1
p , which is negligible. Therefore, if σ′ 6= σ, we can use the adversary A to break

the CDH problem, and thus we guarantee that σ′ must be equal to σ.

It is only the values µ′ = {µ′ik}1≤i≤n
1≤k≤s

and µ = {µik}1≤i≤n
1≤k≤s

that can differ. Assume that the

adversary A responds with σ′ = σ and µ′ 6= µ. Now we have

ê(σ, g) = ê([
∏

(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u
∑n
i=1 µik

k , y) = ê(σ′, g) =

ê([
∏

(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u
∑n
i=1 µ

′
ik

k , y),

from which we conclude that

28

ê([
∏

(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u
∑n
i=1 µik

k , y) = ê([
∏

(j,rj)∈Q

H(IDF ||j)rj]n ·
s∏

k=1

u
∑n
i=1 µ

′
ik

k , y).

Thus,

1 = ê(

s∏
k=1

u
∑n
i=1 ∆µik

k , y)

1 =

s∏
k=1

(gαkhβk)
∑n
i=1 ∆µik

1 = g
∑s
k=1 αk.

∑n
i=1 ∆µik · h

∑s
k=1 βk.

∑n
i=1 ∆µik

h = g
−

∑s
k=1 αk·

∑n
i=1 ∆µik∑s

k=1
βk·

∑n
i=1

∆µik .

Now, we have found a solution to the DL problem unless evaluating the exponent causes a

division by zero. However, the probability that βk = 0 is 1
p , which is negligible. Therefore, if

there is at least one difference between {µ′ik}1≤i≤n
1≤k≤s

and {µik}1≤i≤n
1≤k≤s

, we can use the adversary

A to break the DL problem. As a result, we guarantee that {µ′ik} must be equal to {µik} ∀(i, k).

�

Data Extraction. We have shown that if a polynomial-time adversary A can win the data

possession game (with non-negligible probability) with a challenger C, then A is actually storing

the data in an uncorrupted state. For the purpose of data extraction, the challenger C interacts

with A to extract data blocks. Suppose that C challenges c blocks, namely the blocks with

indices {j1, j2, . . . , jc}, then A responds with a proof P that contains σ = σ
rj1
j1
· σrj2j2 . . . σ

rjc
jc

and

µ = {µik}1≤i≤n
1≤k≤s

, where µik = rj1 · b̃ij1k+rj2 · b̃ij2k+· · ·+rjc · b̃ijck. The challenger C can extract the

actual data blocks {b̃ijk} in polynomially-many interactions with A. If the challenge-response

phase has been repeated c times (each time we challenge c blocks), then there will be c proofs

{P1,P2, . . . ,Pc}. Thus, a system of linear equations can be constructed as follows.

µ1
11 = r1

j1 · b̃1j11 + r1
j2 · b̃1j21 + · · ·+ r1

jc · b̃1jc1
...

µc11 = rcj1 · b̃1j11 + rcj2 · b̃1j21 + · · ·+ rcjc · b̃1jc1
...

µcns = rcj1 · b̃nj1s + rcj2 · b̃nj2s + · · ·+ rcjc · b̃njcs

Solving this system of linear equations yields the data blocks {b̃ijk}.

29

Finally, the PB-PMDP scheme is secure against file swapping attack. The file identifier IDF is

embedded into the block tag, and thus the CSP cannot use blocks from different files and pass

the auditing procedures even if the owner uses the same secret key x with all his files.

