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ABSTRACT
Mobile applications frequently access sensitive personal informa-
tion to meet user or business requirements. Because such informa-
tion is sensitive in general, regulators increasingly require mobile-
app developers to publish privacy policies that describe what infor-
mation is collected. Furthermore, regulators have fined companies
when these policies are inconsistent with the actual data practices
of mobile apps. To help mobile-app developers check their pri-
vacy policies against their apps’ code for consistency, we propose
a semi-automated framework that consists of a policy terminology-
API method map that links policy phrases to API methods that pro-
duce sensitive information, and information flow analysis to detect
misalignments. We present an implementation of our framework
based on a privacy-policy-phrase ontology and a collection of map-
pings from API methods to policy phrases. Our empirical eval-
uation on 477 top Android apps discovered 341 potential privacy
policy violations.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Documentation
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1. INTRODUCTION
In early 2015, the Android operating system (Android) ac-

counted for 78.0% of the worldwide smartphone market share [5].
With this sizable market share comes an increase to end user pri-
vacy risk as mobile applications (apps) built for the Android have
access to sensitive personal information about users’ locations,
network information, and unique device information. To protect
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privacy, regulators, such as the U.S. Federal Trade Commission
(FTC), have relied on natural language privacy policies to enumer-
ate how applications collect, use, and share personal information.
Recently, the California Attorney General Kamela Harris negoti-
ated with the Google Play app store to require mobile app develop-
ers to post privacy policies [21]. Despite this effort to produce these
policies, as with any software documentation, there are opportuni-
ties for these policies to become inconsistent with the code. These
policies can be written by people other than the developers, such
as lawyers, or the code can change while the policy remains static.
Such inconsistencies regarding an end user’s personal data, inten-
tional or not, can have legal repercussions that can be avoided with
proper consistency checks. For example, the FTC, under their un-
fair and deceptive trade practices authority, requires companies to
be honest about their data practices in their privacy policies. Com-
panies, such as SnapChat, Fandango, and Credit Karma, often settle
with the FTC for inconsistent policies and practices by accepting
20 years of costly privacy and security audits [1, 2]. It is there-
fore good practice for mobile apps to clearly state in their privacy
policies what data is collected and for what purpose. For large com-
panies, this task is commonly assigned to a team of legal experts,
however, mobile app developers are frequently small start-ups with
1-5 developers [19] where such a task is not easily assigned.

It is important for software engineers to be aware of the data their
code is collecting along with what their policy says they are col-
lecting not only for legal reasons, but for the production of quality
apps. As more data is entrusted to technology, end users become
more aware of the ramifications of mishandled private data [27].
Thus, software engineers are entrusted by end users to not only
care for their data, but disclose what exactly is being collected.

In this paper, we present three contributions: (1) an empirically
constructed mapping from policy phrases to private-data-producing
Android Application Program Interface (API) methods that has
been compiled from real-world app policies and API documenta-
tion. The many-to-many map links 76 commonly used data collec-
tion phrases and their synonyms to 154 Android API method signa-
tures. (2) We created an approach that identifies privacy promises
in mobile app privacy policies and checks these against code using
information flow analysis to raise potential policy violations. As
part of checking for data over-collection violations within the app,
the approach uses information flow analysis to see if the data is sent
outside the app. (3) We constructed an initial ontology of 368 data
collection phrases to use in conjunction with the API mappings.
The ontology provides a means to increase the phrase coverage of
the mappings without the need for analysis on more apps and pri-
vacy policies.
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This paper is organized as follows: in Section 2, we review the
background upon which we based our approach; in Section 3, we
describe the manual process used in the creation the framework;
Section 4 describes our automated method for privacy policy vio-
lation detection; Section 5 describes the evaluation of our approach
followed by discussion of the results and approach in Section 6;
Section 7 includes related work; Section 8 describes our plans for
future work and we conclude in Section 9.

2. BACKGROUND
This section presents the background upon which our research is

based.

2.1 Android Operating System
Android is an open source mobile operating system (OS) based

on more than 100 open source projects including the Linux ker-
nel. Android is developed by Google and has been reported more
popular as a target platform for developers than iOS in 2015 which
makes it the most popular mobile operating system today [3]. Apps
made to run on Android can be downloaded from multiple reposi-
tories, the most popular being Google Play1. In 2014, Google re-
vealed that there were more than one billion active monthly An-
droid users [38]. These characteristics make it attractive to startups
and established companies alike.

Android utilizes the Linux security model and layers through
a user-based permission system [42]. Apps can access resources
through the permission system to gain access to resources such as
the camera, GPS, Bluetooth, telephony functions, network connec-
tions, and other sensors [42]. Such permissions are granted to apps
by users when they install an app. All permissions not listed to
and subsequently granted by the user are denied to the app [41].
Although Android applies this permission system and rigorous se-
curity management, data leakage and misuse is still possible [15].
This can be due to problems with the current Android permis-
sion system such as low granularity of the permissions [26] and
the ambiguity of the phrases presented to users when installing an
app [23]. Problems such as these can allow apps to access the sen-
sitive data by calling Android Application Program Interface (API)
methods in the app source code.

2.2 Application Program Interface
Applications can interact with underlying Android system using

a framework API provided by the Android platform. The frame-
work API contains set of packages, classes, and methods. The An-
droid 4.2 framework is comprised of about 110,000 methods, some
of which are specifically used to retrieve, insert, update, or delete
sensor data through the Android OS [29]. The use of an API in-
creases the level of security by not allowing apps to have direct
access to all sensor data by default.

Before an app can access specific methods from the API, the re-
quired permissions must be requested by the app through a manifest
file. An app’s manifest file enumerates the app’s required permis-
sions and is described to users when installing an app as well as on
the app’s download page on the Google Play store. Thus, there is a
direct relationship between the permissions granted to an applica-
tion by a user at installation time and eligible API method calls in
the application source code.

2.3 Privacy Policy
Besides the standard permissions for API access documented in

1https://play.google.com/

manifest files, applications’ privacy policies are a source for iden-
tifying what information is collected and used by apps.

A privacy policy serves as the primary means to communicate
with users regarding which and how sensitive personal information
(SPI) has been accessed, collected, stored, shared (app to app, and
to third party), used/processed, and the purpose of the SPI collec-
tion and processing. Privacy policies generally consist of multiple
paragraphs of natural language such as the following excerpt from
the Indeed Job Search app’s privacy policy2 listed on Google Play:

Indeed may create and assign to your device an iden-
tifier that is similar to an account number.We may col-
lect the name you have associated with your device,
device type, telephone number, country, and any other
information you choose to provide, such as user name,
geo-location or e-mail address. We may also access
your contacts to enable you to invite friends to join
you in the Website.

Privacy policies are particularly important in the United States
due to the “notice and choice” approach used to address privacy on-
line [31]. Under this framework, app companies post their privacy
policies and users read the policies to make informed decisions on
accepting the privacy terms before installing the apps [31]. How-
ever, most privacy policies prepared by policy authors are difficult
to understand due to their verbose and ambiguous nature, and this
can lead to users to skip reading policies even if they have concerns
about information collection practices. More significantly, the app
developers might not be able to comply with privacy policies effec-
tively. To address this issue, this work aims to provide a framework
to achieve alignment between apps’ privacy policies and implemen-
tation code, and better communication among software developers
and policy writers.

A major hindrance in the understanding and analysis of privacy
policies is that there is no canonical format for presenting the infor-
mation. The language, organization, and detail of policies can vary
from app to app.

3. MANUAL PREPARATION
The goal of this work is to discover information regarding the re-

lationship between terminology used in privacy policies expressed
in natural language and API method calls used in the corresponding
code. Such a mapping would then provide semantic information re-
garding the natural language. In turn, an app’s source code could
more easily be checked for misalignment with its corresponding
privacy policy. Before we can perform such an automated detec-
tion of privacy policy violations, we must construct initial data sets
and a mapping from which the knowledge can be used to detect
violations in other apps. The following subsections describe how
we leveraged a small subset of Android apps’ source code to im-
plement a mapping from API methods to policy phrases. This in-
formation is is then used to detect violations in a much larger set of
Android apps (discussed in Section 5).

In our approach, we created a mapping between API method sig-
natures in the Android SDK and meanings shared between API
documents and privacy policies. The shared meanings are de-
scribed in an ontology that provides support for comparing two
technical terms: we say that one term subsumes a second term,
when either the first term is more general than the second term,
called a hypernym, or when the second term is part of the first
term, called a meronym. For example, “mobile device model” and

2http://www.indeed.com/legal
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“sensors” are parts of a “mobile device,” whereas “mobile device
model” is also a kind of “mobile device information.” In addition,
we define two terms as synonyms when the meaning is equivalent
for our purposes (e.g., when “IP address” is a synonym for “In-
ternet protocol address”). Because privacy policies tend describe
technical information using more generic concepts, the ontology
allows us to map from low-level technical terms to high-level tech-
nical categories, and vice versa. Once the ontology is constructed,
we can use tools to automatically infer which terms should appear
in privacy policies based on the API method calls in a mobile ap-
plication.

We now describe how we created the ontology and mapping by
extracting terminology from the privacy policies and API docu-
ments respectively, before we classified this terminology using sub-
sumption and equivalence relationships. In each step, we employed
research methods aimed at improving construct and internal valid-
ity and reliability, which we discuss.

3.1 Extracting the API Terminology
In our approach, a subject matter expert, who would typically

be the maintainer of the Application Programmer Interface (API)
documentation, annotates an API document. The annotations map
key phrases in the API documents to low-level technical terminol-
ogy in an API lexicon (e.g., “scroll bar width” or “directional bear-
ing” are low-level technical terms). To bootstrap our approach, we
chose to annotate the entire collection of API documents in the An-
droid SDK, which includes 2,988 API documents containing over
6,000 public method signatures (here, the term “public” refers to
the Java access modifier). Each API document consists of one or
more method signatures, which each consist of the method name,
input parameters, the return type, and a natural language descrip-
tion of the method’s behavior.

The annotation procedure involves three steps: (a) we extract
the method names, input parameters and natural language method
descriptions from the API documentation to populate a series of
crowd worker tasks; (b) for each crowd worker task, two investi-
gators separately annotate the extracted fields by identifying which
phrases correspond to a kind of privacy-related platform informa-
tion; and (c) the resulting annotations are compiled into a map-
ping from the fully qualified method name, including API package
name, onto each annotated phrase (i.e., each method name can map
to one or more platform information phrases). We only compiled
mappings where the two investigators both agreed that the phrase
was a kind of privacy-related, platform information.

In the first step, the signatures were automatically extracted from
the API documents, which were themselves expressed in HTML
generated using the Javadoc toolset. The signatures were then seg-
mented into sets of 20 signatures or less, and each set was presented
in a separate crowd worker task. Applying the segmentation to the
2,988 API documents yields 310 crowd worker tasks.

The crowd worker task employs a web-based coding toolset de-
veloped by Breaux and Schaub [11] for annotating text documents
using coding theory, a qualitative research method for extracting
data from text documents [33]. In coding theory, the annotators
use a coding frame to decide when to code or not to code a specific
item. In our study to annotate the API documents, our coding frame
consisted of a single information code defined as information “re-
lated to personal privacy and accessed through the platform API.”
In the second step, two investigators used this web-based toolset to
code the 310 crowd worker tasks, consuming 6.5 and 6.6 hours for
each investigator to yield 195 and 196 annotations, respectively.

Figure 1 shows an excerpt from the crowd worker task, where a
worker has annotated phrases in the Location package of the An-

Figure 1: API Annotation Crowd Worker Interface

droid API. The toolset has been validated in a prior case study
to extract privacy requirements from privacy policies [11]. The
toolset also includes analytics for extracting overlapping annota-
tions where n or more workers agreed that the phrase should be
annotated.

From the two investigator’s combined annotations, we produced
219 unique annotations with duplicate annotations removed. The
total 219 annotations were next compiled into a mapping between
API method signatures and annotated phrases. The phrases in the
mapping were normalized by the two investigators by converting
the annotated text into simple noun phrases (described further in
Section 3.4). This is necessary to reduce the variety of ways that
method behaviors are described into a concise, reusable API lex-
icon. The resulting lexicon contains 162 unique phrases and 169
total mappings between phrases and API method names. A total of
154 methods were annotated based on the criteria that they produce
privacy related information.

3.2 Extracting the Privacy Policy Terminol-
ogy

Each app page on Google Play includes a link to the app’s pri-
vacy policy if it is specified by the developer. We created a Python
script to download the privacy policies from these links for the top
20 free apps in each app category3. We filtered theses policies
based on their formatting, language (we only considered policies
written in English), and whether or not a “Privacy Policy” section
was explicitly stated in the document and randomly selected 50
from this pool for terminology extraction.

For our approach, we determine which kinds of technical in-
formation should appear in privacy policies to describe privacy-
relevant API method calls. To bootstrap our method, we developed
a privacy policy lexicon in which six investigators annotated the
50 mobile app privacy policies using our crowd worker task toolset
[11]. Unlike the API lexicon, wherein we used only two investi-
gators with programming experience, we used six annotators for
extracting terms from privacy policies, because privacy policy ter-
minology includes vague and ambiguous terms that span a broader
range of expertise (e.g., “taps” corresponds to user input, whereas
“analytics information” includes web pages visited, links clicked,
browser information, and so on.) Thus, by increasing the number of
annotators, we increased our likely coverage of potentially relevant
policy terms.

The crowd worker task employs the same web-based coding
toolset developed by Breaux and Schaub [11]. To prepare the poli-
cies for annotation, we first removed the following content: the
introduction and table of contents, “contact us”, security, U.S. Safe
Harbor, policy changes and California citizen rights. This con-
tent generally appears in separate sections or paragraphs, which

3The list of app categories is available at the Google Play website,
and the top 20 apps for each category was fetched on May 19th
2015.
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reduces the chance of inconsistency when removing these sections
across multiple policies. While these sections do describe privacy-
protecting practices, such as complying with the U.S. Safe Harbor,
we have never observed descriptions of platform information in our
analysis of over 100 privacy policies in our previous research [12].
Next, we manually split the remaining policy into spans of approx-
imately 120 words. We preserve larger spans which either have an
anaphoric reference back to a previous sentence (e.g. when “this
information...” depends on a previous statement to understand the
context of the information), or when the statement has subparts
(e.g., (a), (b) etc.) that depend on the context provided by earlier
sentence fragments. On average, we need 15 minutes per policy to
complete the preparation.

The coding frame for the privacy policy terminology extraction
consists of two codes: platform information, which we define as
“any information that $company or another party accesses through
the mobile platform, which is not unique to the app;” and other
information, which we define as “any information that $company
or another party collects, uses, shares or retains.” We replace the
$company variable with the name of the company whose policy is
being annotated. Next, we compiled the annotations where two or
more investigators agreed that the annotation was a kind of plat-
form information; we excluded non-platform information from this
data set. We applied an entity extractor [9] to the annotations to
itemize the platform information types into unique entities, which
were then included in the privacy policy lexicon.

Among the 50 policies, we constructed 5,932 crowd worker tasks
with an average word count of 98.6; the average words per policy
was 2054.6. These tasks produced a total of 720 annotations across
the 50 policies, which yielded a total of 368 unique platform infor-
mation entities. The total time required to collect these annotations
was 19.9 hours across six annotators, all of whom are authors of
this paper. We now discuss how we created a platform information
ontology from this lexicon.

3.3 Constructing the Ontology
A common phenomena in natural language description is gen-

eralization, in which a more general phrase can be used to imply
a number of sub-concepts of the phrase. For example, the phrase
“technical information” may imply a wide range of technical data,
while the phrase “device identifier” is more specific, but its concept
is still covered by phrase “technical information”. Since phrase
generalization is often used to describe information collected, it
is important to be able to distinguish these relationships between
phrases in order to identify cases where a concept is represented in
another phrase. To handle this, we created an ontology of privacy-
related phrases to be used as a cross reference during the identifi-
cation of methods not represented in privacy policies.

An ontology is a formal description of entities and their prop-
erties, relationships, and behaviors [20], and is described with for-
mal languages such as OWL (based on Description Logic). In the
context of phrase mapping, we use an ontology to represent a hi-
erarchical classification of phrases. For example, in Figure 2, “IP
Address” is a decedent of “Network Information”, indicating that
IP Address is a type of network information. The hierarchical na-
ture of an ontology allows for transitive relationships that can be
used for mapping API methods to phrases indirectly based on rela-
tionships between the phrases themselves.

The ontology is used to formally reason about the meaning of
terminology found in the API documents and privacy policies. For
an API lexicon Â and a privacy policy lexicon P̂ consisting of
unique terms (or concepts), the ontology is a Description Logic
(DL) knowledge base KB that consists of axioms C v D, which

Figure 2: Abbreviated Ontology Example with Mapped API
Methods

means concept C is subsumed by concept D, or C ≡ D, which
means concept C is equivalent to concept D, for some concepts
C,D ∈ (A ∪ P ). Using our API lexicon, our aim is to map
a method name m from an API document to a concept A ∈ Â.
Next, we aim to infer (in a forward direction) all policy concepts
{P |P ∈ P̂∧KB |= P v A∨KB |= P ≡ A}. In this respect, we
can extract method names from method calls in a mobile app, then
infer corresponding policy terms (among which at least one) should
appear in the mobile app’s privacy policy. Similarly, we can reason
in the backward direction to check which policy terms mentioned
in the app’s policy map to which method names corresponding to
method calls in the app.

We constructed the ontology following a method developed by
Wadkar and Breaux [37]. First, we generated a basic ontology con-
sisting of one concept for each term in the privacy policy lexicon;
each concept was subsumed by the > concept, and no other rela-
tionships among concepts existed. Second, for two copies of the
basic ontology KB1 and KB2, two investigators separately per-
formed pairwise comparisons among term pairs C, D in each on-
tology, respectively: if two terms were near synonyms, the first
investigator created an equivalence relation KB1 |= C ≡ D; else,
if one term subsumed the other term, the first investigator created
a subsumption relationship KB1 |= C v D. Due to the num-
ber of pairwise comparisons, it’s not unreasonable to expect that
a single investigator would produce an incomplete ontology, or an
ontology that is inconsistent with another investigator’s ontology.
To check for completeness and consistency between two investiga-
tors, we compared all relationship pairs between KB1 and KB2,
including cases were a relationship did not exist in one of the on-
tologies. Both investigators met to reconcile any differences, rec-
ognizing that classification differences can persist forward into our
analysis of mobile app violations.

For two investigators, the resulting ontologies KB1 and KB2

consisted of 431 and 407 axioms, respectively. The first com-
parison yielded 321 differences and was evaluated using Cohen’s
Kappa to measure the degree of agreement above chance alone
[14], which was 0.233. After the reconciliation process, the in-
vestigators were left with 12 differences and a Cohen’s Kappa of
0.979.

3.4 Constructing the Mapping
With the ontology constructed from the privacy policy lexicon,
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Figure 3: Mapping Process

individual API methods could then be mapped to one or more terms
in the ontology based on their annotations from the API lexicon as
well as their return types. Figure 3 shows how intermediate noun
phrases were created as a canonical representation of the method’s
description and then mapped directly to terms in the ontology based
on their relationships. This canonicalization process made explicit
the domain knowledge about the methods (i.e., canonical terms)
and the natural language used to describe the method in privacy
policies (i.e., terms in the ontology). As exemplified in the figure,
the documentation describes “dynamic information about the cur-
rent Wi-Fi connection” as the data it produces. In cases such as this,
where the description did not explicitly describe the information re-
turned, we analyzed the object returned by the method. Here, the
object (of type WifiInfo) provided multiple public fields and meth-
ods from which we were able to assign the canonical terms in the
figure (as seen in the white circle). From there, the canonical terms
were associated with related terms in the ontology based on their
relationships. This effectively produces a mapping between each
of the API methods and one or more terms in the ontology (assum-
ing the method is privacy-relate) and vice versa. We refer to this
many-to-many mapping relation, of which each element is a pair,
(policy term,API method), asMappings in the following sec-
tions.

4. AUTOMATED VIOLATION DETEC-
TION

To detect potential privacy policy violations, we first identify
API method invocations that produce data covered by a known pol-
icy term from the privacy policy lexicon. Next, we use information
flow analysis to check whether that data flows to a remote server
via a subsequent network API method invocation. Data collected
by a method is considered a potential privacy policy violation if
the method is not represented in the app’s privacy policy through
Mappings. An overview of the full process is in Figure 4.

4.1 Weak and Strong Violations
As discussed in Section 2.3, privacy policies serve to inform

users about how their personal information is collected and used.
These policies cover a wide range of practices, including in-store,
client-side, and server-side practices, and they may describe all of a
company’s practices, or be limited to only those practices of a sin-
gle product or service. In this paper, we are only concerned about
client-side practices affecting mobile applications. In addition, pri-
vacy policies are not complete: they generally describe a subset of
the company’s practices. Therefore in our approach, we only detect
errors of omission, in which the app collects a kind of information
that is not described in the policy. Errors of omission are potential
policy violations, because the collection may be unintended by the
app developer. Moreover, because privacy includes notifying users
about how their information is collected and used, errors of omis-

Figure 4: Violation Detection

sion represent potential privacy violations. We detect two kinds of
violations resulting from errors of omission: strong violations that
occur when the policy does not describe an app’s data collection
practice, and weak violations that occur when the policy describes
the data practice using vague terminology. Other kinds of policy
errors, such as direct conflicts, in which a conflict occurs because
the policy states that an app does not collect a kind of information
and the app does indeed collect that kind of information, are out of
scope of this paper.

4.2 Detection of Suspicious Method Invoca-
tions

To begin the process, we preprocess the app’s privacy policy to
generate a set of method-related phrases that represent what the pri-
vacy policy states it collects. First, all words in each policy para-
graph are converted to their base dictionary form (i.e., lemmatiza-
tion) [25]. If the lemmatized paragraph contains a collection verb4,
the paragraph is kept for further analysis. Next, the intersection
of the lemmatized words in the paragraphs and the phrases in the
privacy policy ontology is calculated to produce the set of exist-
ing policy phrases Φ. We use Φ and the many-to-many relation
Mappings to generate a list of method names, Arepresented,

Arepresented = {α | φ ∈ Φ ∧ α ∈ map(φ)} (1)

where Arepresented denotes the set of methods that are directly
represented within the privacy policy based on the mapping, and
map(φ) produces all the methods to which φ is mapped.

The set of omitted API method names can then be defined as the
following, whereAmapped represents the set of API method names
that appear in Mappings (i.e., all methods in the Android API for
which at least one mapping to a policy phrase exists).

Aomitted = Amapped \Arepresented (2)

The app’s source code can now be scanned for any instances
of α ∈ Aomitted. Such instances would then be flagged as a
suspicious invocation, ω. To determine information about the in-
vocation, the offending API method name, ω, is cross-referenced
with Amapped to determine all phrases to which it is mapped,
Φω . The ontology is then used to determine the set of termi-
nological ancestors, Ψω , of all φ ∈ Φω (Equation 4), which
are those phrases that include in their interpretation the data ac-
cessed by the API method invocation. The phrases Ψω seman-
tically subsume (i.e., are more generally descriptive of) at least
one member of Φω according to the ontology. The relationships
4The collection verbs used in this study are the result of the manual
annotation by two investigators of 25 random privacy polices from
the set of 50 privacy policies described in Section 3.2.
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between α, ω, Φ, and Ψ can be seen in Figure 2, where an α
becomes an ω if it is a suspicious invocation. Due to the na-
ture of an ontology, the set of nodes of highest level HNodes =
{“information”, “software”, “technology”} is generally de-
scriptive of all of their subterms and thus not useful.

Therefore, we use Equation 3 to describe the ontology.

O′ = O \HNodes (3)

Ψω = {ψ | φ ∈ Φω ∧ φ v ψ} (4)

The members of Ψω represent terminological ancestors of ω that
relate to ω through a subsumption relationship. These ancestors
may include other interpretations that are not associated with ω
(e.g., “technical information” includes “location information” and
“usage information”, which are distinct and different kinds of in-
formation). Thus, we check ψ ∈ Ψω for matches in the privacy
policy to determine if ω is described in the policy through a more
general term. If a match is found, then a resulting violation is
flagged as a weak violation (i.e., the policy contains a phrase transi-
tively mapped to an API method name). Otherwise, the violation is
flagged as a strong violation, which means there is no relationship
between any phrase in the policy, the ontology, and the correspond-
ing API method invocation. While a strong violation is obviously
harmful to the protection of the users’ privacy due to the lack of
notice, a weak violation is still potentially harmful, because it in-
dicates the lack in sufficient detail about the data practice and it
can be used as a guide for improving the clarity of the privacy pol-
icy [30].

4.3 Information Flow Analysis
As explained above, an API method invocation becomes a vio-

lation only if the information it fetches is sent to remote servers.
Therefore, we need to further check the destination of the fetched
data, and existing information flow analysis tools provide the tech-
nique needed for this goal. We also require a list of sink methods
that send information to remote servers.

It should be noted that our framework works with any informa-
tion analysis tool and sink methods list for network data transfer.
In our implementation, we leveraged FlowDroid [6], the state-of-
art technique for Android information flow analysis, to track the
information flow within Android byte code. We also used the list
of sink methods for network data transfer described by SUSI [29],
a machine-learning tool for classifying Android sources and sinks.

5. EMPIRICAL EVALUATION
In this section, we present an empirical evaluation of our frame-

work by applying it to top Android apps and their privacy policies.
In the evaluation, we try to answer the following research questions.

• RQ1: Is our framework able to detect violations of privacy
policies in real-world Android apps?

• RQ2: How do the techniques in our framework affect its
effectiveness on violation detection?

• RQ3: What are the major types of privacy information that
are silently collected in detected privacy policy violations?

5.1 Study Setup
In this subsection, we introduce how we construct the data set for

empirical evaluation, the metrics used, and the compared variants
of our framework.

5.1.1 Data Collection
The first step in our evaluation is to construct a data set of An-

droid apps with their corresponding privacy policies. In particular,
from the official Google Play market, we downloaded the top 300
free apps5, as well as the top 20 free apps for each app category6.
We combined all the downloaded apps and acquired an app data
set of 1,096 apps. Note that, although most Android apps have pri-
vacy policies, the app owners may put the policy at different places,
such as their portal site at Google Play market, or a link in the main
page of their company/organization. The privacy policy can also
be in different formats, such as HTML, PDF, or Windows Word
Document. Based on our observation, a large proportion of apps
place their corresponding privacy policy at their portal websites at
the Google Play market. Therefore, we crawled these websites and
tried to automatically download the privacy policies of these apps.
Furthermore, we considered only HTML privacy policies (the most
popular format of privacy policies) in our evaluation for simplicity
and avoiding potential noise in text extraction from various file for-
mats. Note that, with proper text extraction tools, our framework
can be applied to any format of privacy policies. Based on the au-
tomatic downloading and file format filtering, we collected privacy
policies for 477 of the 1,096 apps, and thus generated a data set
with 477 apps and their corresponding privacy policies7.

5.1.2 Evaluation Metrics
To answer research questions RQ1 and RQ2, we needed to mea-

sure the effectiveness of violation detection. In our study, we mea-
sured the effectiveness of our framework by the number of vio-
lations detected, the number of true positives, false positives, and
violations whose types (strong violations or weak violations) are
mis-identified. It should be noted that, the ground-truth number
of true violations in the entire data set is unknown, and thus the
number of false negatives can not be calculated. In particular, we
determined whether a detected violation is a true violation by man-
ual inspection, and each violation was assigned to and inspected by
two of the authors. For disagreements, a third author was assigned
for reconciliation. When counting violations, we considered all in-
vocations of the same API in an app as one violation.

5.1.3 Evaluated Techniques
To answer research question RQ2, we considered two variants

of our framework, and compared them with our default technique.
In our API mapping, we leveraged the knowledge from Android

official documentation and crowd sourcing techniques to generate
a fine-grained mapping between API methods and phrases in pri-
vacy policies. As a means to evaluate this fine-grained mapping,
the first evaluation variant (referred to as “SUSI-only”) used the
coarse-grained SUSI API categorizations to map API methods to
phrases. Specifically, we assigned phrases in the ontology to their
most relevant SUSI categories (e.g., all descendants of the phrase
“unique identifiers” in the ontology are assigned to the category of
“unique identifiers”). Note that, since we focus on the collection
of platform information only, the API methods in our mapping fall
into one of the following 5 categories in SUSI: Unique Identifiers,
Location Information, Network Information, Bluetooth Informa-
tion, and No-Category (a SUSI category for API methods that are

5The ranking of top 300 free apps is available at the Google Play
website and was fetched on May 19th 2015.
6The list of app categories is available at the Google Play website,
and the top 20 apps for each category were fetched on May 19th
2015.
7The data set is available at our project website:
http://sefm.cs.utsa.edu/android_policy.
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Figure 5: Distribution of Apps on the Number of Detected Vio-
lations

difficult to categorize), so we also assigned our policy phrases to
these 5 categories. After the assignment of phrases, we mapped
all phrases in a category in SUSI categories to all the API meth-
ods in the same category, and thus generated a new coarse-grained
mapping based on SUSI only.

A second variant (referred to as “Keyword Search”) was used to
study the effectiveness of using light-weight NLP techniques, such
as lemmatization, to filter out irrelevant paragraphs in privacy poli-
cies (described in Section 4.2). Specifically, this method did not use
any filtering techniques and instead used a simple keyword-search-
based strategy to extract phrases, Φ, from the privacy policies.

5.2 Study Results
Overall Results. We applied our default technique to the 477

pairs of apps and privacy policies in our data set. For the 477 apps,
with a 30 minute time-out limit for each app, FlowDroid success-
fully processed 375 of them8. From these 375 apps, our default
technique detected 402 violations in total, including 58 strong vi-
olations and 344 weak violations. Our manual inspection revealed
that, among these detected violations, 341 were true violations, in-
cluding 74 strong violations and 267 weak violations (note that our
framework mistakenly classified 19 strong violations as weak vio-
lations). The detection of 267 true weak violations shows that our
privacy-phrase ontology is helpful on differentiate weak violations
from strong violations.

We further studied how these violations were distributed among
the apps, and the result is shown in the Pareto chart in Figure 5.
In the figure, the blue bars represent the number of apps that have
a certain number of violations, and the red line represents the pro-
portion of apps that have violations smaller or equal to a certain
number. From the figure, we can observe that, the violations are
detected in 132 apps, and the majority of the apps had 3 or fewer
violations. Specifically, the 74 true strong violations are from 31
apps, and the 267 true weak violations are from 101 apps.

Study on detection errors. Our default technique generated 3
false positives for strong violations and 58 false positives for weak
violations. From our manual inspection, the cause for the majority
of the false positives was that the privacy policies used phrases not
in our ontology to describe the private information they collected.
For example, a privacy policy used the phrase “carrier provider” to
describe mobile network provider. Since the phrase is not in our on-
tology, our technique mistakenly determined that network informa-
tion is not mentioned in the privacy policy and reported a false vi-

8Processing of the rest 102 failed due to time-out, heap overflow,
or other exceptions.

Table 1: Evaluation of Detected Violations
Approach Type # De # True # Mis # FP

Default
Technique

Strong 58 55 0 3
Weak 344 267 19 58
Total 402 322 19 61

SUSI
Only

Strong 15 12 0 3
Weak 82 44 31 6
Total 97 56 31 9

Keyword
Search

Strong 1 0 0 1
Weak 389 261 74 54
Total 390 262 74 55

olation. Another relatively minor cause of false positives was that,
in some cases, our NLP technique may have mistakenly filtered
out paragraphs related to data collection. In such a scenario, the
phrases in the removed paragraph would not be detected, so their
corresponding API methods would not be added to Arepresented

for the app and thus a violation would be raised.
Overall, our default technique was able to detect privacy-policy

violations in a significant number of top Android apps and our false
positive rate is relatively low, suggesting that developers do not
need to waste much effort on inspecting false violations.

Comparison of variant techniques. To answer RQ2, we im-
plemented the two variant techniques described in Section 5.1.3
and applied them to our data set. The three techniques detected
406 violations in total. Specifically, the Keyword-Search variant
detected a proper subset of the violations detected by our default
technique, and the SUSI-Only technique detected 3 weak viola-
tions and 1 strong violation that our default technique did not find.
Our manual inspection found that 2 of the weak violations and
the 1 strong violation were true positives. In Table 1, columns 3-
6 presents the number of detected violations (# De), the number
of correctly-classified true positives (# True), the number of mis-
classified true positives (# Mis), and the number of false positives
(# FP), respectively.

From the table, we make the following observations. First,
among the 3 techniques, our default technique was able to detect
the most violations and achieved the highest type-classification ac-
curacy (322/402 = 80.0%). Therefore, our default technique was
more effective in general. Second, the SUSI-Only variant was only
able to detect 97 violations, with 31 strong violations misclassified
as weak violations. Inspection of the missed violations showed that
the major reason for missed violations was that the SUSI categories
are simply too coarsely grained. This was apparent particularly for
the category of network information where an API method may be
mapped to a phrase that has not much relation with it. For example,
the method getNetworkOperatorName should be mapped to “car-
rier network”, but under the umbrella of network information, it is
also mapped to “Wifi Access Points”, “MAC Address”, etc. There-
fore, an app that sends carrier network information through this
API method may be interpreted as not having a related violation
because of the mistakenly mapped phrases are in the privacy pol-
icy. Third, the keyword-search technique is able to detect slightly
fewer violations, but it cannot classify strong violations from weak
violations. The reason is that, the more abstract a phrase is, the
more likely that it appears in a paragraph that is not related to data
collection. For example, the phrase “MAC Address” is almost al-
ways used to describe data collected, while the phrase “network”
may be used for many different purposes (e.g., “social network”).
Since the keyword-search variant cannot filter out paragraphs that
are not data-collection related, it can mistakenly extract many ab-
stract phrases from irrelevant sections. Under the umbrella of these
abstract phrases, an API methods can easily find a map, and thus a
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strong violation is mistakenly identified as weak violation.
Top privacy information types in detected violations. To un-

derstand what types of private information are silently collected
in privacy-policy violations, we studied the 10 API methods and
phrases that were associated with most detected true violations.
The results are presented in Figure 6 and Figure 7, respectively.
In the two figures, the y-axis shows the name of the API or phrase,
and the x-axis shows the number of strong (shown in gray) viola-
tions and weak (shown in black) violations associated with the API
method or phrase. For brevity, we present only the short name of
APIs in Figure 6.

From Figure 6, we can observe that the top API methods associ-
ated with detected violations fall into 4 major categories. The API
methods ranked 1st, 3rd, 8th, 9th, 10th in the list are all regarding
mobile network information such as carrier network and mobile
country code. The API methods ranked 2nd, 4th, and 5th are about
GPS location information. The other two relatively smaller cat-
egories are getUserAgentString (browser information) ranked the
6th, and getDeviceID ranked the 7th. Similarly, Figure 7 shows
a similar trend in that mobile country code (mcc) and carrier net-
work are the most common missing phrases. The category of GPS
location is related to the phrases ranked the 3rd, 4th, and 5th. The
following two categories are different ways to describe device iden-
tifiers such as IMEI, UDID, etc., and the browser type. It should be
noted that location information is one of the most important types
of information involved in detected violations since it is required to
be explicitly stated in privacy policies [2].

5.3 Threats to Validity
Construction Validity is the extent to which we have measured

what we think we are measuring [40]. In this study, we collected
annotated phrases privacy policy terms and API terms that concern
platform information. To address this threat, we provided annota-

tors with the same process and instructions for identifying relevant
phrases, and we selected only those policy terms where two or more
workers agreed to the annotation. When constructing the ontology,
the investigators employed heuristics [37] to justify the classifica-
tion and agreement was measured using a chance-corrected statistic
at each iteration to identify disagreements for reconciliation. With
respect to measuring violations, we introduced two kinds of viola-
tions: strong violations wherein the known policy terms were not
found in the associated policies, and weak violations in which the
app’s policy includes vague terms that are generally associated with
the information accessed by the app.

Internal Validity refers to whether the causal inferences we de-
rive from the dataset are valid [40]. When mapping policy terms
to API terms, the investigators made numerous inferences. To re-
duce this threat, the investigators decomposed the mapping process
into multiple, independent tasks: annotating the policy excerpts to
identify personal information accessed through the platform, iden-
tifying ontological relationships between policy terms, identifying
canonical names for platform API, and classifying those names by
the policy terms in the ontology. For each of these step, the work
was limited to small tasks in which each datum was individually
reviewed by multiple investigators. The entire process consumed
more than 33 hours, however, it reduced the likelihood that infer-
ences would be missed, for example, by identifying relevant API
method descriptions and aligning them directly with policies in an
otherwise ad hoc fashion.

External Validity refers to the extent to which our results gener-
alize to other policies and domains. In this study, we manually ex-
amined 50 policies to construct the ontology and policy-API map-
ping. To reduce this threat, we selected the most frequently used
apps from different app categories to enhance the representative-
ness of our data set. However, we only sampled from Android
apps, thus it is possible that our results do not extend to iOS-based
apps, or further to web-based applications. However, some of our
apps only had a combined privacy policy for mobile and web-based
applications, thus, we are confident that our method could be ex-
tended to web-based applications with further research.

6. DISCUSSION

6.1 Violation Detection
We have shown in Section 5.2 that the mapping helps to facil-

itate policy violation detection with a reasonable number of false
positives. This trait could be used to assist developers in verify-
ing policy consistency for their own code. In such a scenario, the
tool could bring to light potential violations between policy and
code that may not be immediately or intuitively obvious to the end
user or developer. Furthermore, because the framework would be
used as a quality assurance tool for developers, false positives do
not present a threat since, by definition, a falsely detected violation
would be covered by the privacy policy.

Violation detection is improved through the use of our ontology
(as relevant in the detection of strong and weak violations). The
ability for compliance to be implied through transitive relationships
between terms allows for the improvement of the overall approach
without the need for more method-phrase maps. An increase in
coverage could be achieved by simply improving or adding phrases
to the ontology, resulting in the possible detection of more weak
violations. The relationships between methods and policy phrases
also have the potential to be applied to new and existing API doc-
umentation to improve privacy risk awareness. This could be used
as a standard through which methods could be associated directly
and indirectly to policy-oriented phrases. Such annotations could
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then be used for violation detection and policy generation as well
as an indication of the privacy-relevant information types produced
by the method.

The potential benefits to developers from our work imply a need
for a tool. We are currently working on an Android Studio IDE
plugin, PoliDroid, that takes an existing privacy policy and source
code as input and notifies the developer of potential violations in a
similar style to syntax error highlighting. The tool works by scan-
ning the privacy policy for phrases from our ontology and produc-
ing a list of permissible API method calls, APIrepresented. The
tool then scans through the source code for API method calls that
exist in our entire mapping to produce a set of methods that both
exist in the code and that we have data for, APIused. If APIused
contains methods not present in APIrepresented, a notification is
raised signifying a potential violation. Effectively, the tool takes
source code and a natural language policy to raise warnings about
the terms used in the policy. The tool would also be able to function
without a policy as input and instead produce terms with which a
policy can be created. This would work by scanning the code for
methods in our mapping and producing a minimum set of terms
that would cover all of the methods. We believe such a tool would
be appropriate for Android app developers due to their familiarity
with the IDE.

6.2 Ontology Learning System
The ontology produced for this work was based only on phrases

found in 50 privacy policies owing to the time-intensive nature of
manually annotating the policies. To enable the inclusion of related
phrases from many more policies into our ontology, we have devel-
oped an Ontology Learning System (OLS) based on Natural Lan-
guage Processing (NLP) tools and the OWL API. Using this learn-
ing system we have been able to extract phrases with subsumption
relationships between them from privacy polices. We ran this tool
on a sample of 493 privacy polices and we were able to extract
783 sentences that are related to information collection. Moreover,
the subsumption relationship between the phrases in the same sen-
tence were also identified. Currently, we are working to improve
the results of the tool through sanitization and enhancements to the
parser. As a next step, we will use the OWL API to automatically
extend the initial ontology used in this study with extracted phrases
and relationships from the OLS.

6.3 Web-Based Applications
During our analysis of the privacy policies, we found that many

of the policies were made to cover a wide range of apps not limited
to AndroidOS. In most of these cases, the text implied the rele-
vance of web-based applications. We believe that our technique
has the potential to be applied to such applications. However, since
web-based applications do not freely provide their implementation
(such as Android’s APK bytecode) it would be difficult to mine
their API method calls. Furthermore, the wide variety of web ap-
plication frameworks, languages, platforms, and servers would add
more layers of implementation to take into account. This is out of
our scope until there is enough data from web-based applications
with common components.

7. RELATED WORK
Prior work exists on the factoring of privacy and privacy policies

into source code. To our knowledge, ours is the only technique that
works to bridge the gap between privacy policy and implementation
through the use of natural language mappings to API methods.

7.1 Privacy and Permissions
Android has a permission system that is used for apps go to gain

access to certain API methods. An app must declare these permis-
sions as part of its source code. In turn, the user is notified during
installation as to what the app requests. This permission system
is related to privacy policies in that the methods that are accessed
through the permissions are, or should be, represented in the app’s
privacy policy. An app’s privacy policy can be cross-checked with
an app’s permissions, but permissions are not necessarily defined at
method-level granularity. There is existing research that explores
both privacy policies and OS permissions.

Rowen et al. have developed an IDE plugin, Privacy Policy
Auto-Generation in Eclipse (PAGE), for generating privacy poli-
cies along side the development of the app [32]. PAGE works by
guiding the user through a series of questions about the implemen-
tation of the app. Based on the answers, PAGE uses existing policy
templates to generate a privacy policy for the app. Unlike our tech-
nique, PAGE does not take into account method calls or informa-
tion flow and cannot be used for the detection of policy violations.
As described in Section 6.1, we are working on a tool that uses our
mappings to both generate phrases for use in privacy policies and
verify the accuracy of a policy with respect to its app.

The static analysis tool PScout was developed by Au et al. for
the analysis of the Android OS permission system [7]. The Android
permission system helps policy consistency since it is used to show,
at a course-grained level, the data that the app can access. PScout
maps these permissions to method calls in order to evaluate their
coverage. PScout itself does not work as a tool for linking policies
to code, but its analysis of the Android permission system shows a
limited interconnection of method-permission mappings with over
80% of methods related to only one permission. Among our map-
pings, 59% of the methods mapped to only one phrase. We believe
this is due to how our approach uses canonicalization to expand a
method’s description to potentially associate it with more than one
policy phrase. This higher rate of interconnectivity is important for
violation detection since methods can return objects from which
more than one type of information can be collected.

Existing work by Petronella presents a tool that relates natural
language in privacy policies to Android permissions [28]. The tool
works by providing the user with the list of permissions for an app
along with the sentences from the privacy policy that are related to
each permission. This is similar to our work in that it maps natural
language phrases to potential data collection actions in the app’s
implementation. However, it is limited to the granularity of the
Android permission system. Our work looks past permissions and
related policy phrases directly to method invocations.

Stoaway, a tool created by Felt et al., detects over-privilege in
compiled Android apps [16]. The tool found that among 940 apps,
35.8% were over-privileged. Analysis of the apps showed that
copied code and testing artifacts were among the reasons for un-
necessary privileges. These kinds of defects can be brought to light
with policy verification through the use of our violation detection
framework.

Vidas et al. have created a tool, Permission Check Tool, to assist
developers in selecting minimal necessary permissions [36]. The
tool uses static analysis to check the code for API references. Those
references are cross-checked with a permission-method database
created by the authors in order to generate a minimal set of permis-
sions. These tools help to minimize privacy issues purely from an
implementation standpoint. Our mappings can be used in conjunc-
tion with these to verify the corresponding policies.

Similarly, Bello-Ogunu et al. have created an Eclipse IDE plu-
gin, PERMITME to guide developers in selecting Android permis-
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sions [8]. The authors tested the tool on students in a mobile ap-
plication development course and found that the assistance reduced
the time spent on assessing privacy permissions and was found to
be helpful and welcomed overall. PERMITME does not integrate
natural language privacy policies in any way. However, the results
of their study support the idea a privacy tool targeted at developers
may help to alleviate the time spent on privacy compliance. Our
data would allow for more privacy assurance with policy checking.

A new model is being used for the permission system in An-
droid 6.0 [4] While the new model is backwards compatible with
apps that use the old model, new apps will use new features that
may affect previous work regarding the old permission model. Our
framework is more robust in the sense that it is not affected by
changes to the permission model since it works on the API level.

7.2 Security and Privacy Ontologies
Much research has been carried out on ontology implementation

and usage in computer and information systems in recent years [10,
13, 18, 22, 35]. However, the majority of these works are regarding
permission based systems, firewalls, and pervasive systems. We
discuss them there.

Breaux et al. implemented an ontology to analyze the privacy
policy of multi-tier systems to find the conflicts between the poli-
cies regarding data collection, usage, retention and transfer [12].
The authors consider Facebook, Zynga (the developers of Far-
mville), and the AOL advertising company which provides adver-
tisements in Farmville in a case study identifying the conflicts be-
tween their privacy policies. This is done by mapping the privacy
requirements from natural language policies to description logic
in order to minimize ambiguity. An ontology of web application
privacy policy terminology, similar to the ontology used in our re-
search, is used for this work.

In other research, Chen et al. implemented a shared ontology for
ubiquitous and pervasive applications called SOUPA [13]. Their
research included modular component vocabularies to represent
intelligent agents with associated beliefs, desires, and intentions,
time, space, events, user profiles, actions, and policies for security
and privacy. This research take advantage of spatial relations in
reasoning about the collected information from user. They used the
shared ontology to facilitate decision making in dynamic environ-
ment. This ontology does not consider the privacy policy related
to the mobile applications and is mainly concerned about security
policies in pervasive systems and knowledge sharing using the on-
tology.

In the domain of ontologies as access control and permission
systems, Kagal and Finin considered client-server model and the
privacy policies related to both web services and clients as users of
web services [22]. Their ontology was implemented for use as an
access control model and was implemented based on user specifi-
cation and requirements for web services. Similarly, Grandon and
Sadeh preserve users’ contextual information from being misused
by web-applications using an ontology as an access control mech-
anism [18]. In their research, users control who has access to their
contextual information and under which conditions. These works
focus on using ontologies as a mechanism for security, whereas the
ontology used in our work is a tool for validation of intent.

Bradshow et al. implemented an ontology based on policies
for behavior regulation of intelligent agents to continually adjust
their behavior and maximize the effectiveness of intelligent sys-
tems [10]. The ontology is used for specification, management,
conflict resolution, and enforcement of policies in intelligent sys-
tems which does not align with our goal in mobile applications pri-
vacy policies.

7.3 Information Flow Analysis
In our work, we leverage information flow analysis to check

whether privacy information accessed from a certain method flows
to the network. To achieve this, we used FlowDroid [6], a state-
of-art static information analysis tool for Android apps. Other
Android-oriented static information analysis techniques include
CHEX [24], LeakMiner [39], and ScanDroid [17]. Specifically,
CHEX detects component hijacking vulnerabilities in Android ap-
plications by tracking taints between externally accessible inter-
faces and sensitive sources or sinks. LeakMiner is an earlier
context-insensitive information-flow analysis technique for detect-
ing privacy leaks in Android apps. ScanDroid tracks information
flows among multiple apps and detects privacy leaks into other
apps. There are also dynamic information flow analysis techniques
such as TaintDroid [15] and CopperDroid [34] that may detect pri-
vacy leak at runtime. It should be noted that all of the information-
flow analysis techniques take a formal specification (e.g., a list of
allowed flows from certain source methods to sink methods) and
detect privacy leaking. However, the privacy policies are written
in natural language so information-flow analysis cannot be directly
applied. Our framework helps to bridge the gap by using the on-
tology and API method mappings, and may benefit from more ad-
vanced information flow analysis techniques in the future.

8. FUTURE WORK
Our work in this paper has revealed problems that expand beyond

our original scope. First of all, privacy data transmitted through
the network does not necessarily imply that the data is eventually
stored (i.e., collected) in the organization’s servers. To determine
if the data that is written to the network is actually collected and
stored, we plan to develop novel techniques to further trace the
flow of information from the user’s phone to the respective orga-
nization’s data repositories. Second, when detecting weak viola-
tions, our framework does not distinguish between closely related
phrases (e.g., “device information” and “device id”) and distantly
related phrases (e.g., “technology” and “browser language”). In the
future, we plan to calculate semantic distance between phrases in
the ontology in order to better measure the severity of weak vio-
lations. Third, a lot of privacy information of mobile app users is
provided by users though the user interface of the apps. Therefore,
besides Android API methods that are already considered in our
framework, we plan to future extend our framework to handle user
inputs as a new type of information source.

9. CONCLUSION
Mobile applications collect significant amount of privacy sen-

sitive data from their users’ devices. Organizations that develop
these applications have a legal and moral obligation to clearly ar-
ticulate to their users what data are being collected in the form of
an application-specific privacy policy. However, these organiza-
tions lack sound mechanisms that can help them determine if the
stated privacy policy is accurate—i.e., are the applications collect-
ing pieces of privacy-sensitive data that is not stated in the policy?
This paper presents a framework that addresses this problem by de-
tecting such privacy policy violations in Android application code.
Furthermore, its use has discovered 341 strong and weak violations
from 477 top Android applications.
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