
506

31

Introduction

Nowadays, almost all the information is stored electroni-
cally in computers, network servers, mobile devices, or
other storage media. We cannot protect electronic infor-
mation in a cabinet in the same way we protected physical
documents in the past. We have to come up with new tech-
niques to protect the information from unauthorized access,
use, or manipulation. The easiest way to protect electronic
data is to encrypt it so that people cannot figure out what
it contains without knowing the secret keys. Over the last
several decades, two major types of encryption techniques
have been invented: private key encryption and public key
encryption.

Private key encryption, which is also called symmetric
encryption, scrambles the original data with a secret key. In
order to unscramble a message or file, people need to have
the same secret key. Otherwise, there is no way to recover
the original data. Public key encryption, also called asym-
metric encryption, usually scrambles the original data with
a publically accessible key. In order to unscramble a mes-
sage or file, people have to be able to supply a different pri-
vate key, which is paired mathematically with the public key
used in the encryption phase. Some special software tools are
needed to generate the pair of public and private keys. We
will demonstrate how to create your own public and private
keys later, using a free open source tool called GNU Privacy
Guard (GnuPG or GPG).

Cryptography is a good tool for security, and it is the
basis for many security mechanisms. However, it should be
mentioned that it is not the solution to all security problems.
Building a reliable and highly secure system is a multifaceted
and very complicated process, which requires us to look at
various potential attacks from different angles. A system’s
actual security status is not the same as the technology
employed to secure it. For example, passwords, which are
the foundation on which much of computer security is built,
pose one of the biggest practical problems [1]. Nowadays,
people visit many different websites and are required to set
passwords for many of them. In order to make things easier,
many people use the same password for various accounts. In
such cases, if their passwords are harvested by an attacker

by intercepting the network traffic, keyboard logging, or
simply guessing, then the attacker can get into all their other
accounts that share the same password. Also, if an insider in
one system compromises their password, their accounts in
other systems are also compromised.

In this chapter, first, we will review private key encryp-
tion and public key encryption techniques. Then, we will give
examples of how to perform private key encryption, public
key encryption, and digital signing using GPG. Second, we
will discuss some of the threats, which a computer system
or user may face, and how they work. Third, we will exam-
ine some existing authentication techniques and take a look
at various authorization methods, especially those used on a
Linux system. Finally, the last topic will be on how to secure
devices.

Private Key Encryption

Private key encryption was invented earlier than public key
encryption, and it is the standard form of encryption used
nowadays. The purpose of private key encryption is to keep
the data secret. Its advantage includes efficient algorithms
for encryption and decryption. However, the limitation is
that both senders and receivers must share the secret keys.
The difficulty in sharing secret keys is how to safely transmit
them before one can even start encrypting messages. Many
security systems or mechanisms use public key encryption
to transmit secret keys, and then use private key encryption
to encrypt the actual data. The reason for that is to combine
the beauty of public key encryption with the speed of private
key encryption.

Figure 31.1 shows the building block of private key
encryption. The meanings of symbols in this figure are as
follows.

•	 E: encryption unit
•	 D: decryption unit
•	 M: plaintext, that is, the original message
•	 C: ciphertext, that is, the encrypted message
•	 K: the secret key shared between say an operator and

a manager

Network Security, Threats, Authentication,
Authorization, and Securing Devices

Wenbin Luo

K10922_C031.indd 506 7/5/2011 7:32:19 AM

31  Network Security, Threats, Authentication, Authorization, and Securing Devices   507

It should be noted that the encryption and decryption
algorithms (E and D) are publicly known. A simple exam-
ple of encryption and decryption is as follows. Assume that
we have a one-byte secret key (K) “?” whose ASCII code
in hexadecimal is “3f.” The message (M) we would like to
encrypt is a character “%,” whose ASCII code in hexadeci-
mal is “25.” Assume that we use the following simple encryp-
tion algorithm (E): just do bit-wise exclusive-or operation of
M and K as follows.

K: 3f = 0 0 1 1 1 1 1 1

M: 25 = 0 0 1 0 0 1 0 1

C: 1a = 0 0 0 1 1 0 1 0

The decryption algorithm (D) is similar to the encryption
algorithm: just do bit-wise exclusive-or operation of C and K
as follows.

K: 3f = 0 0 1 1 1 1 1 1

C: 1a = 0 0 0 1 1 0 1 0

M: 25 = 0 0 1 0 0 1 0 1

It is clear that the original message, M, is recovered. This
simple scheme can be extended to encrypt and decrypt long
messages or data with long keys. If the length of the key is
the same as that of the message and each key is used once and
only once during encryption, then the above system is called
one-time pad, which is very secure. However, it should be
mentioned that the above method is not secure and should not
be used in practice when a single key is used repeatedly. A
simple cryptanalysis could either recover the message, M, or
reveal enough information about M from the C, without even
knowing the secret key, K. This is especially true when M
consists of human audio conversations because of the abun-
dant redundancy in natural languages.

Stream Ciphers

Generally speaking, a private key cipher can be classified as
either a stream cipher or a block cipher. Figure 31.2 shows
how a stream cipher works. It takes as inputs a key (K) and
a message (M). The key is usually of fixed size such as 128
or 256 bits and the message can be of arbitrary size. Given a
fixed-size key, a stream cipher will need to generate a pseu-
dorandom key (PK) of the same size as that of M, and then
do bit-wise exclusive-or operation of M and PK to get the C.

The PK generation algorithm is the most important part of
a stream cipher. The diagram of a stream cipher is shown in
Figure 31.2.

To recover the original message from the C, the stream
cipher needs to take the same key K from the user and gener-
ate the same PK based on K. After that, it applies bit-wise
exclusive-or operation to C and PK to uncover the message
M. RC4 is a widely used stream cipher, which was designed
by Ron Rivest of RSA Security in 1987. It is used in popu-
lar protocols such as secure sockets layer (SSL) to protect
Internet traffic and wired equivalent privacy (WEP) to secure
wireless networks.

Block Ciphers

Block ciphers work differently from stream ciphers. Instead
of generating a PK of the same size as a message, block
ciphers divide the message into blocks of the same size,
which is usually 64, 128, or 256 bits. Then it encrypts each
individual block with a user-supplied secret key (K) of fixed
size, such as 56, 128, 168, 192, or 256 bits. Figure 31.3 shows
the diagram of a block cipher.

Similar to encryption, a block cipher starts decryption by
dividing the C into blocks of the same size first. After that, it
decrypts each individual block of C with the secret key. The
core parts of a block cipher are encryption (E) and decryp-
tion (D) algorithms, which usually involve some mixing
operations several times. Data encryption standard (DES)
and its variant triple DES, and advance encryption standard
(AES) are two of the most widely used block ciphers. DES
uses substitution-box (s-box) to perform some mixing opera-
tions, whereas AES relies on mathematical operations in
finite fields to achieve similar goals [2]. It should be men-
tioned that block ciphers could work in different modes,

E

K

M
C

K

C M

Transmission

D

Fig. 31.1
The building block of private key encryption.

K

PK

Exclusive-OR operation

M

PK

C = PK M+

+

Fig. 31.2
A stream cipher.

K10922_C031.indd 507 7/5/2011 7:32:20 AM

508    Networks, Security, and Protection

such as the electronic codebook (ECB) and the cipher-block
chaining (CBC), in order to allow block ciphers to provide
confidentiality or message integrity.

Public Key Encryption

Public key encryption was invented in 1970s. Its encryption
provides confidentiality. In addition, it can be used to cre-
ate digital signatures, which provide data integrity. Unlike
private key encryption, there are less efficient algorithms for
public key encryption and decryption. However, the advan-
tage of public key encryption is that it does not require secret
keys shared in advance.

Public key cryptosystems use trapdoor functions to
encrypt and decrypt. A trapdoor function is a function that is
relatively easy to compute its value in one direction and very
difficult to find its inverse without knowing some special
secret information, called the “trapdoor.” Trapdoor functions
are widely used in cryptography. One of the best-known trap-
door functions is RSA, which was created as an algorithm
for public key cryptography in 1978. RSA are the surname
initials of its three inventors Ron Rivest, Adi Shamir, and
Leonard Adleman at Massachusetts Institute of Technology
(MIT). The security of RSA depends on the time complexity
of factoring large integers. In other words, there are currently
no efficient ways (with respect to time) to factor large integers
on modern computers. The high-level overview of a public
key cryptosystem, including RSA, is shown in Figure 31.4.

The mathematical proof of why RSA works can be found
in many textbooks such as Stallings 2003 [2]. A public key
cryptosystem can be used in two different ways: data encryp-
tion and digital signature. Assume that two users mentioned
above, an operator and a manager, want to communicate with
each other. Further, assume that each user has a pair of public
and private keys (Kpa, Kra) and (Kpb, Krb), respectively. We
will demonstrate how to generate a key pair later.

Data Encryption

Assume that the manager wants to encrypt an M and send
the encrypted message, that is, C, to the operator. First, she
needs to get the operator’s public key Kpb, and then encrypt
the message as follows:

C = E(Kpb, M); where E is the encryption algorithm of the
public key cryptosystem.

Once the encrypted C is sent it is decrypted using private
key Krb as follows:

M = D(Krb, C); where D is the decryption algorithm of the
public key cryptosystem.

It should be mentioned that a user’s public key (Kpa or
Kpb) can and should be made publicly available to receive and
read encrypted messages. However, a user’s private key (Kra
or Krb) should be kept secret. Otherwise, anyone with access
to the private key can read his encrypted messages.

RSA versus Elliptic Curve Cryptography

Two mathematicians, Neal Koblitz and Victor Miller, inde-
pendently discovered elliptic curve cryptography (ECC) in
1985. They found that a well-known structure called “ellip-
tic curve” is suitable for employment in cryptography. The
advantage of ECC in comparison to RSA is convincing: less
memory requirement and computation time, which indicates
less storage and greater speed. As a result, ECC can be used
in smart cards, cellular phones, and pagers. As an example,
key lengths of 160 bits as in ECC ensure the security of a
RSA key of 1024 bits. The RSA procedure currently changes
its key length to 2048 bits. As a result, ECC only has to
increase its key length to 192 bits. The security of an ECC
key of 512 bits is the same as that of a RSA key of 15,360 bits.
U.S. National Security Agency (NSA) adopted ECC for pro-
tecting information classified as mission-critical by the U.S.
government. It seems very likely that other government agen-
cies and the commercial sectors will follow suit and adopt
ECC for strong security across a wide variety of applications
and devices.

Public Key Infrastructure

The public key infrastructure (PKI) is used to avoid intercep-
tion and decryption of messages. Within a PKI, the trusted
certificate authority, such as VeriSign, is responsible for
signing a user or a server’s public key. Of course, for this
to work, everyone has to know the certificate authority’s

E

K

n-bit message blocks n-bit ciphertext blocks

D

K

n-bit ciphertext blocks n-bit message blocks

Fig. 31.3
A block cipher.

E

Kp

M

Kr

C

Transmission

Kp and Kr are public key and private key, respectively.

MDC

Fig. 31.4
A public key cryptosystem.

K10922_C031.indd 508 7/5/2011 7:32:20 AM

31  Network Security, Threats, Authentication, Authorization, and Securing Devices   509

public key in order to verify its signature. If you check your
web browser, you will find hundreds of preinstalled certifi-
cate authorities’ public keys, including VeriSign, Microsoft,
Wells Fargo, Thawte, RSA Security, Cybertrust, and so on.
Certificate authority can sign certificates, which identify oth-
ers including other authorities. It leads to certificate chains.
A high-level overview of a public key infrastructure is shown
in Figure 31.5.

In the above figure, the signed certificate contains a serv-
er’s public key, Kp-S, which is signed by a certificate authori-
ty’s private key, Kr-CA. The authenticity of Kp-S can be verified
by any clients with the publicly known key Kp-CA. However,
Kr-CA cannot be revealed from the signed certificate.

Recent Developments

The security of RSA depends on the fact that factoring large
integers is hard on a classical computer. Even though it is
impractical for today’s computers to crack the two public key
cryptography schemes RSA and ECC, a quantum computer, if
ever built, would be powerful enough to render both schemes
useless. Peter Shor [3] showed that efficient randomized
algorithms for factoring integers and finding discrete loga-
rithms, another hard problem on a classical computer, exist
on a quantum computer. In other words, a quantum computer
could factor large integers in polynomial time. Therefore, the
RSA cryptosystem will be broken on a quantum computer.
For that reason, cryptographers are searching for new cryp-
tographic techniques to resist quantum computer attacks [4].
Currently, researchers are working in at least the following
four directions, which use different mathematical structures:

1.	 One direction is to use the theory of error-correcting
codes. In an error-correcting code-based scheme,
errors are added into a message to make it unreadable.
Only the intended receiver with the right code could
correct the error and recover the original message.

2.	 Another direction is to utilize the fact that solving ran-
domly generated polynomial systems is supposed to

be very hard. The corresponding scheme is called a
multivariate public key system.

3.	 The third direction is to develop a hash-based sig-
nature scheme, which uses secure hash functions to
compress a large data set into a unique identification
number.

4.	 The last one is to build a lattice-based system. One
such example is the NTRUEncrypt public key crypto-
system, which is based on the shortest vector problem
in a lattice [5]. Its security relies on the difficulty of
factoring certain polynomials in truncated polyno-
mial rings. NTRUEncrypt public key cryptosystem
was standardized in 2008 as IEEE Standard 1363.1-
2008. Its speed and low memory usage make it very
attractive for use in wireless devices and smart cards.
More information on the system can be found at its
company’s website at http://securityinnovation.com/.

With the rapid advance of parallel and distributed com-
puting technology combined with the more and more power-
ful classical computers being built, we have to keep increasing
the key sizes of RSA and ECC in order to avoid brute force
attack on both techniques, which might eventually make
the application of RSA and ECC too complicated and less
efficient, especially on wireless devices and smart cards. At
present, NTRUEncrypt cryptosystem performs at least five
times faster than some existing public key cryptosystems. In
addition, it is believed to be immune to quantum computer
attacks. As a result, it is a leading candidate for adoption if
quantum computers render RSA and ECC unusable.

Threats

According to privacyrights.org, the top three ways leading
to data breach are hacking, stolen equipment, and lost equip-
ment. Hacking alone causes more than half of all reported
data breach cases. Over hundreds of millions of customer
records have been lost or stolen in the last few years. Hacking
refers to the process of making a system function in ways
unexpected by the system owner or designer. The system
could be operating systems, software applications, hardware
systems, or their combinations. An attacker uses hacking to
gain information from computer systems illegally or even
make them stop functioning normally. Over the years, many
hacking techniques have been reported, which include struc-
tured query language (SQL) injection, cross-site scripting,
denial of service (DoS), buffer overflows, phishing, pharm-
ing, and many more [6,11].

In this section, we will briefly describe three common
attacks noting that there exist many other treats, such as
viruses, malwares, worms, and botnets. As computing is
evolving constantly, the threats are changing too. Nowadays,
an increasing number of applications are hosted on the cloud.
Mobile devices and smart phones, such as various netbooks,
iPhone, and Android-based handsets, are used widely, which

Server (Kp-S, Kr-S)

Certificate authority
(Kp-CA, Kr-CA)

Signed certificate
(Kp-S, Kr-CA)

Signed certificate
(Kp-S, Kr-CA)

Client

Kp-CA
Kp-S

Fig. 31.5
Public key infrastructure.

K10922_C031.indd 509 7/5/2011 7:32:21 AM

510    Networks, Security, and Protection

changes the way we perform online banking, shopping, and
other activities. They now become the new targets of cyber
attacks.

SQL Injection

SQL is a database language for managing data in relational
database management systems. SQL injection attacks a data-
base system by passing malicious code via syntactically valid
SQL statements to an SQL server for parsing and execution.
The following line of code illustrates how SQL injection
works.

SELECT * FROM USERS WHERE uname IS
‘$username’

The above SQL statement is to pull out all the records
whose field uname equals to the user input, stored in the
variable $username, from the database table USERS.
However, if a malicious user crafts a special string, such as
“’; DROP TABLE USERS; ––”, as user input, then the fol-
lowing SQL statements will be passed to an SQL server.

SELECT * FROM USERS WHERE uname IS ‘’; DROP
TABLE USERS; ––’

It actually consists of the following two valid SQL state-
ments. The string “––’” is an SQL comment, which will be
ignored by an SQL server.

1.	SELECT * FROM USERS WHERE uname IS ‘’;
2.	DROP TABLE USERS;

The first SQL statement is to pull out all records whose
field uname is empty, whereas the second SQL statement is
to delete the entire table USERS. In other words, all records
in that table will be eliminated. To prevent SQL injection, it
is very important for you to validate and filter all user inputs.

Phishing

Phishing refers to the act of luring people to surrender their
private information via fake e-mails or instant messages,
which usually direct users to a bogus site to update per-
sonal information, such as credit card numbers, passwords,
etc. Once the information is entered at the bogus site, it is
stolen. Phishing e-mails typically contain some grammati-
cal mistakes or typos. Following is a fake e-mail, claiming
from a legitimate bank. It asks users to confirm their account
information. Please pay special attention to the URL link in
the message, which, if clicked, will actually direct users to
another website.

Followings are some commonly used phishing methods.

•	 Use carefully chosen domain names to confuse users,
such as
http://www.amazon.com.phishingSite.com

•	 Use a URL that redirects users to a phishing site,
such as
http://www.goodBank.com/url.php? http://www.phishing​
Site.com

•	 Use randomized links, such as
http://www.IAmNotAPhishingSite.com/e83h736k47jd/,
which actually points to a phishing site

Pharming

Pharming aims to redirect a legitimate website’s URL to a
bogus website by changing the hosts file on a victim’s com-
puter or by exploiting vulnerability in domain name system
(DNS) server software. For example, most Linux systems
use /etc/hosts file to resolve computer names or URLs. An
attacker can add the following line to a computer’s /etc/hosts
file to redirect a good website to a bogus site as follows.

IPAddressOfPhishingSite http://www.goodBank.com

Next time, when a user using the computer tries to visit
http://www.goodBank.com, the browser will be redirected to
a phishing site with the IP address IPAddressOfPhishingSite.
This type of attack is even more difficult to detect because
the URL of a phishing site is the same as that of a legitimate
website. It will bypass all URL checks. Similarly, an attacker
can hack a DSN server to enable pharming attacks.

Authentication

The goal of authentication is to establish who the user is. The
basis for authentication can be something you know, such as
password and crypto key, or hardware token, or biometrics
(fingerprint). In this section, we will discuss different authen-
tication techniques, including password authentication, cer-
tificate authentication, tokens, and biometrics.

Password Authentication

The basic idea for password authentication is that each user
has a secret password, and a system checks users’ passwords
to authenticate users. The issues to be addressed here include:
(1) How are users’ passwords stored? (2) How does a system
check users’ passwords? (3) How easy is it for attackers to
guess users’ passwords? Password hacking includes diction-
ary attacks where users’ passwords are compared against the
words or their combinations in a dictionary. If a match is found,
then basically a user’s password is guessed correctly. In real
applications, passwords are usually not stored in clear texts
to prevent people from seeing the passwords directly. Instead,
their hash values are stored in a password file. A hash function
takes a password as input and produces a hash value as the
output. A good hash function has the property that given an
input, it is easy to calculate the output. However, given the out-
put, it is very difficulty (ideally impossible) to recover the cor-
responding input. Various techniques have been proposed over
years to make password guessing more difficult or infeasible.

K10922_C031.indd 510 7/5/2011 7:32:21 AM

31  Network Security, Threats, Authentication, Authorization, and Securing Devices   511

One such method is called password salting, which stores
a random salt along with a user password. A salt is usually
a random bit string. For example, a 12 bit random salt slows
down password guessing by a factor of 212 because each pass-
word can now be combined with one of the 212 possible salts.
In order to guess the password, an attacker has to compute
and find out the correct salt first.

Another technique is scratch list–based one-time pass-
word. It works as follows. A system generates a list, called
scratch list, of random passwords, which is delivered to a user
via an independent channel such as physical delivery by a
trusted person, or the user picks it up by himself. The first
time a user logs into the system, he uses the first password
in the scratch list. After that, it was crossed over so that the
second time he has to use the second password in the list to
log into the system. And it continues that way. Since both
the system and the user keep the same list, the system can
authenticate users correctly.

When a user wants to log into a system remotely, his
password has to be sent over a network such as Internet to
the remote system. This can be very risky if the password is
sent over the network without encryption. Someone can eas-
ily intercept the user’s password during its transmission, and
therefore, can illegally log into the system using it. Several
techniques have been proposed to solve the above problem.
One method is to encrypt users’ passwords before transmis-
sion over the network, as used by secure shell. There are
many secure shell clients available. Under Linux, Unix, and
Mac OS X, a secure shell client is usually installed by default
and a user can access it by simply typing the command “ssh”
to launch it. If not installed, a user can always install a free
version of it called OpenSSH. On Windows machines, one
can use PuTTY, which implements the secure shell protocol.

Another technique employed to protect passwords is
called challenge–response authentication. When a user initi-
ates a connection to a system, the system presents the user
with some string called challenge. Upon receiving the chal-
lenge, the user computes the output, called response, of a cer-
tain function with the challenge and the user’s secret key as
inputs, and then sends the response to the system. When the
response arrives at the system, system checks to find out if
the response has certain properties. If it does, then the system
authenticates the user successfully. Otherwise, the authen-
tication fails. As we can see, during challenge–response
authentication, the user’s secret password is not sent over the
network. Therefore, challenge–response authentication is
very suitable for authentication over a network [11].

Certificate Authentication

Certificate authentication involves PKI. A popular example
of certificate authentication is the cryptographic protocols
used by web browsers: transport layer security (TLS) and
its predecessor, SSL. SSL/TLS provides authenticated key
exchange, which is used for secure communications over net-
works. It requires certificates issued by a trusted certificate

authority. Financial institutions and online shopping sites
use SSL/TLS to secure customers’ transactions. All major
web browsers have installed hundreds of known certificate
authorities’ public keys. SSL protocol works in two steps:
SSL handshake protocol and SSL record protocol. SSL
handshake protocol results in a secret session key shared by
a server and a web browser to encrypt all subsequent com-
munications. SSL record protocol provides encryption and
integrity for transmitted data.

A brief explanation of the SSL handshake protocol
works as follows. A web browser starts the SSL handshake
protocol by sending a request to a server. The server picks
a secret random session key and encrypts it using the serv-
er’s private key. Then, the server sends the web browser
both the encrypted session key and its certificate, that is, its
public key signed by a known certificate authority. When
the web browser receives the encrypted session key and the
server’s certificate, it first verifies the authenticity of the
server’s certificate using the certificate authority’s public
key, which is already installed in the web browser. Once
the web browser verifies the authenticity of the server’s cer-
tificate, it then uses the server’s public key to decrypt the
encrypted session key to get the secret session-key. This
way, only the server and the web browser share the session-
key. As we can see, the server and the web browser estab-
lish the session-key using public key encryption. After that,
they encrypt all the data sent between them using private
key encryption with the session-key as the secret key. The
reason that private key encryption is preferred over public
key encryption to secure all subsequent communications is
that private key encryption is in general much faster than
public key encryption.

Token-Based Authentication

Token-based authentication devices generally work in the
following two different ways: one-time password and chal-
lenge–response system. A one-time password device pro-
duces a new password each time a user wants to log into
a system. Since the password changes every time the user
logs in, it increases the difficulty for an attacker to guess the
password correctly. In order for the device and the system to
produce synchronized sequence of passwords, the device and
the system need to share some initial data, which has to be
set up securely. A challenge–response-based device receives
a challenge from the system each time a user wants to log in.
It then computes a response based on the challenge received
and some initial data stored in the device. Next, the device
sends the response back to the system to authenticate the user.
When the system receives the response, it checks its validity
to decide whether the user should be authenticated or not.

Biometrics-Based Authentication

Biometrics-based authentication uses a person’s physical
characteristics to authenticate him to a system. The typical

K10922_C031.indd 511 7/5/2011 7:32:21 AM

512    Networks, Security, and Protection

physical characteristics include fingerprint, hand, retina,
voice, face, written signature, and keyboard timing. The
advantages of using physical characteristics are that they
cannot be lost or forgotten. However, unlike passwords, bio-
metrics cannot be changed. In addition, biometrics-based
authentication depends on reliable algorithms to accurately
identify users’ physical characteristics. A false-positive,
which identifies a wrong person’s physical characteristics as
real one, will allow unauthorized person to access the sys-
tem. On the other hand, a false-negative, which fails to iden-
tify a legitimate user’s physical characteristics as real one,
will deny an authorized person to access the system.

Authorization

Authorization determines what a user is allowed to do. It
is the procedure of specifying consumers’ access rights to
resources such as electronic data, computer devices, and
functionality provided by other applications or devices.
Consumers include users, software programs, and various
devices. The key part of authorization is to define access pol-
icy. On modern multiuser operating systems, such as Linux,
authorizations are usually expressed as access policies in the
form of file permissions or access control lists. In defining
access policies, the principle of least privilege is strongly rec-
ommended. That is, consumers should only be authorized to
access whatever they need to accomplish their tasks and no
more. Before a system checks a consumer’s access rights to
the resource, it usually uses authentication to verify the con-
sumer’s identity. It should be mentioned that another separate
procedure, accounting, is often applied to determine what a
user actually did.

Basic File Permissions in Linux

In this chapter, Linux system will be used as an example to
discuss issues on authorization. In this system, each object

is represented as either a regular file or a special file. The
following symbols are used to denote different file types in
Linux as shown in Table 31.1.

In a Linux system, there are three basic permissions:
read (r), write (w), and execute (x).

•	 Read (r): It allows you to read, view, and print a file.
•	 Write (w): It allows you to write, edit, and delete a file.
•	 Execute (x): For a regular file such as a binary program

or shell script, it allows you to execute the file. If it is a
directory, it allows you to search the directory.

Let us take a look at the following line:

-rwxr––r–– 1 wluo staff 1245 2009-12-18 14:08
ABC.txt

The first triplet of characters is rwx, which indicates that
the owner wluo of the file “ABC.txt” has the read, write,
and execute permissions to it. The second triplet “r––” indi-
cates that the group staff has read permission to the file.
The “–” indicates that read and execute permissions are not
granted to the group staff. The last triplet “r––” indicates
that everyone else has the same permissions to the file as the
group staff.

Advanced Permissions in Linux

Besides the three basic permissions read, write, and execute,
Linux has the following advanced permissions:

•	 SUID (also known as “Set User ID” or “setuid”): If
this permission is set on an executable file, the user
who executes that file will have the same permissions
as the owner of the file. An example is the passwd pro-
gram in Linux, which is owned by the root user and is
used by all users to change their user passwords. The
SUID permission is set for the passwd program so that
all users can run the program to change their passwords

TABLE 31.1
File Types in Linux

Symbol Meaning Description

— Regular file They contain normal data, such as text files, images, documents, and executable
programs

D Directory Files that are lists of other files

L Link A mechanism to make a file or directory visible at multiple locations of a Linux
system’s file structure

B Block device A mechanism used for input and output. It refers to devices through which the
system moves data in the form of blocks

C Character device A mechanism used for input and output. It refers to devices through which the
system transmits data, one character at a time

S Socket A special file type, similar to TCP/IP sockets, providing inter-process networking
protected by the file system’s access control

P Named pipe A special file type, which acts more or less like sockets and forms a way for
processes to communicate with each other, without using network socket semantics

K10922_C031.indd 512 7/5/2011 7:32:21 AM

31  Network Security, Threats, Authentication, Authorization, and Securing Devices   513

and write their new passwords into either/etc/passwd
or /etc/shadow file. Regular users do not have write
permission to either /etc/passwd or /etc/shadow file,
which prevents them from unauthorized changes. In
order for them to be able to change their passwords,
the SUID permission for the passwd program has to
be set as shown below by the ending s in the first trip-
let “rws” on a Ubuntu Linux system.

		 $ ls -l /usr/bin/passwd
		 -rwsr-xr-x 1 root root 29104 2008-12-08

01:14 /usr/bin/passwd

•	 SGID (also known as “setgid”): This permission
can be applied in two ways. First, if it is set on an
executable file, the user who executes that file will
get the same permissions as the group owner of the
file. Second, if it is applied on a directory, everything
created in that directory afterward will get the group
owner of the directory as its group owner. SGID per-
mission is often set on a directory, shared by a team
working on the same project, so that every team mem-
ber can create files in that directory and share them
among each other. The following commands show
how to set a directory’s SGID, and then confirm it as
shown in the last line by the ending s in the second
triplet “rws” on a Ubuntu Linx system.

		 $ chmod g + s fun
		 $ ls -ld fun
		 drwxr-sr-x 2 wluo wluo 4096 2010-01-02

11:30 fun

•	 Sticky bit: Sticky bits can be used to prevent files in
a public writable directory from being deleted in an
undesirable way. For example, Linux systems usually
have the sticky bit set on the directory /tmp, to which
all users have write permissions as shown below by the
ending t in the third triplet “rwt” on a Ubuntu Linx sys-
tem. This way, it can prevent users from deleting each
other’s files either accidentally or maliciously because
in this case only the owner of a file can delete it.

$ ls -ld /tmp
�drwxrwxrwt 14 root root 4096 2010-01-
02 08:13 /tmp

Access Control Lists, Capabilities,
and File Attributes in Linux

So far, we discussed the basic permission model on a Linux
system. However, the default Linux permission system has a
shortcoming, that is, it does not allow more than one entity
to be set as user or group owner of a file. Access control lists
(ACL) offers a way to overcome this shortcoming. One can
add to the access control list multiple users or groups who
also have rights to the file. Before the use of ACLs on a file
system, option acl to the Linux file system configuration file
/etc/fstab must be added for all file systems. After that, server

needs to be restarted, or remount all partitions (e.g., mount -o
remount/) where ACLs have been applied. After ACLs has
been enabled for a given file system, the setfacl command
can be used for setting or getfacl command can be used to
monitor the permissions that are set for a file. On a Ubuntu or
Debian Linux system, the setfacl and getfacl commands are
from the package acl, which can be installed by running the
command apt-get install acl. In the following example on a
Ubuntu Linux system, we first show the default ACL of a file.
Then we grant an additional user mail read (r), write (w), and
execute (x) access to the file.

In addition, on a modern Linux system, the kernel capa-
bilities were introduced to provide some granular control to the
capabilities of the root user, who is the administrator of a Linux
system. Kernel capabilities make it possible to allow or disal-
low particular pieces of the root user’s power. To control those
capabilities, you can install a package called lcap by running
the command apt-get install lcap on a Ubuntu or Debian Linux
system. After the package is installed, one can use the com-
mand lcap to display or remove the Linux kernel capabilities.

Finally, files on a Linux system can be secured by working
with file attributes. Once the owner of a file sets file attributes
on it, they will be applied to all users who access the file. On
a Linux system, one can use chattr and lsattr commands to
change or display file attributes. There are many attributes
available, which can assign files to control default system
behaviors. As an example, several available file attributes and
their meanings are as follows. To avoid a certain amount of
disk I/O for laptop systems, one can set a file’s “A” attribute.
This way when the file is accessed, its access time record will
not be modified. One can set a file’s “s” attribute set so that
when the file is deleted, its blocks are zeroed in the storage
media to provide secure deletion. To allow future recovery
of a file after its deletion, one set a file’s “u” attribute so that
the file’s contents are saved automatically when it is deleted.

Securing Devices

Users usually store images and the data in their hard drives
without encryption. But it is extremely important to protect
data via encryption. Due to the advancement in hardware and
software technology, we can do on-the-fly data encryption,
that is, everything written to the disk or removable media
is automatically encrypted. On modern hardware, the over-
head for encryption is negligible and no dedicated hardware
is required to make that happen. In this section, we will first
review some available tools for full disk encryption. Then,
we will present a working example on how to implement disk
encryption using a free open source tool in Linux.

Full Disk Encryption Tools

We will compare different full disk encryption tools in terms
of cost, supported operating systems (OS), and features, as
shown in Table 31.2 [13–29].

K10922_C031.indd 513 7/5/2011 7:32:21 AM

514    Networks, Security, and Protection

TABLE 31.2
Full Disk Encryption Tools

Product Supported OS Cost Description

Windows BitLocker Drive
Encryption

http://www.microsoft.com/
windows/windows-vista/
features/bitlocker.aspx

Windows Included with the Ultimate
edition of Windows Vista
and Windows 7

It enhances data protection by combining drive encryption
with the integrity checking of early boot components. In
addition, Windows 7 has a new feature called BitLocker To
Go, which protects portable storage devices and external
hard drives

IronKey
https://www.ironkey.com/

Windows, Linux, and
Mac OS X

From $79 to $299,
depending on the size of
the drive (1G–32G)

It claims to be the world’s most secure flash drive. It has the
following features: military-grade encryption, identity
theft protection, secure web browsing, and secure
password storage

BitArmor DataControl http://
www.bitarmor.com/

Windows N/A Only one software installation for file encryption, full disk
encryption, and protection for removable media, e-mail
attachments, and CD/DVD

TrueCrypt
http://www.truecrypt.org/

Windows, Linux, and
Mac OS X

Free/open source It provides pre-boot authentication and plausible deniability,
that is, hidden volumes and hidden operating systems, in
case an adversary forces you to reveal the password.

DiskCryptor
http://diskcryptor.net/index.php/
DiskCryptor_en

Windows Free/open source It claims to be the only truly free solution without
TrueCrypt’s limits on the use and modification of its
source code. Based on its website, its goal is to become the
best product in its category

StorageCrypt
http://www.magic2003.net/

Windows $30 It takes only few seconds to encrypt a 100 GB drive, and it
is very easy to use

DriveCrypt Plus Pack
http://www.securstar.com/

Windows $125 It provides preboot authentication and hidden operating
systems. In addition, it supports USB-token authentication
at pre-boot level

Dekart Private Disk
http://www.dekart.com/

Windows $65 This product has a unique feature called disk firewall, which
protects data from illegal copying, viruses, and spyware by
controlling what applications can access the encrypted
disk. Also, it can be launched directly from removable
media, such as USB

FreeOTFE
http://www.freeotfe.org/

Windows, with
support for
encrypted Linux
volumes (Cryptoloop
“losetup,” dm-crypt,
and LUKS)

Free/open source It is easy to use, highly portable, and works on both PCs
and PDAs. In addition, it provides Linux compatibility
(Cryptoloop “losetup,” dm-crypt, and LUKS supported)

PGP Desktop Professional
http://www.pgp.com/

Windows and Mac
OS X

$239 In addition to full disk encryption, it supports e-mail
encryption and IM encryption as well.

McAfee Endpoint Encryption
http://www.mcafee.com/us/
enterprise/products/data_
protection/data_encryption/
endpoint_encryption.html

Windows N/A A product with full features, including seamless integration
with existing infrastructure such as active directory, LDAP,
PKI, and others

GuardianEdge Hard Disk
Encryption

http://www.guardianedge.com

Windows N/A It provides native active directory integration, power
failure protection, and secure access to encrypted hard
drives through a recovery mechanism when passwords
are lost

BestCrypt
http://www.jetico.com/
encryption-bestcrypt-volume-
encryption/

Windows $120 It provides transparent encryption of all the data stored on
fixed and removable disk devices and has features such as
anti-keylogger, traveller mode, and multiply passwords

CREDANT Mobile Guardian
http://www.credant.com/
products.html

Windows N/A It provides six key layers of protection: user data
encryption, application data encryption, external media
encryption, common data encryption, system data
encryption, and operating system protection

K10922_C031.indd 514 7/5/2011 7:32:21 AM

31  Network Security, Threats, Authentication, Authorization, and Securing Devices   515

Even though full disk encryption can protect computers
and mobile devices very well, it is not the ultimate assurance
against data leaks. It is only part of the solution to protect
information overall. For example, if a user has an encrypted
hard drive, but he needs to send sensitive files via e-mails or
copy them onto USB devices. With only full disk encryp-
tion, the files attached to e-mails or copied to USB devices
will be in unencrypted form. File-based encryption supple-
ments full disk encryption, especially in shared machines or
devices. Some full disk encryption tools in Table 31.2 provide
this type of protection mechanism. For example, BitArmor
DataControl uses smart tag technology to protect data as
it travels from device to device. It provides persistent file
encryption, full disk encryption, protection for USB drives,
and encryption for e-mail attachments. Smart tags contain
encryption and protection policies and stay with files at rest
or in motion. This way, data are consistently protected at
all times, which does not require any extra efforts from end
users.

An Example: Disk Encryption in Linux

In this section, we will show very briefly how to use a free
open source package dm-crypt to encrypt a file system on
a Ubuntu Linux system. The package dm-crypt is a trans-
parent disk encryption subsystem in Linux kernel versions
2.6 and later. It resides entirely in the kernel space and uses
some front-end tools such as cryptsetup and cryptmount to
facilitate the creation and activation of encrypted volumes.
We will use the cryptsetup in this example.

Setting up the system for encryption: To create an encrypted
file system in Ubuntu, we first install the userland tool crypt-
setup to manipulate the functionality provided by dm_crypt.

Encrypting a file system: Once the system of encryption is
installed and understood, one can start encrypting a file sys-
tem that reside in disk partitions, or volumes of redundant
array of inexpensive disks (RAID), or logical volumes and

individual files. The dm-crypt can also be used to encrypt
the whole disks, including removable media. In addition, dm-
crypt can be used to encrypt the root file system.

Unmouting an encrypted file system: When a system is pow-
ered or no longer needed to access the encrypted file system,
it has to be unmounted, which is basically the reverse pro-
cess of the previous section. First, the file system needs to be
unmounted using the umount command as.

$ sudo umount TopSecret

Remouting an encrypted file system: After encrypted file
system is unmounted, it needs to remounted it again before
the next usage. First, create a loop device by running the fol-
lowing command.

$ sudo losetup /dev/loop0 safetyBox

It should be mentioned that the all the procedures above
could be automated with a Linux shell script to ease the task of
setting up, unmounting, and remounting the encrypted device.

Conclusions and Summary

Network security studies the theories and tools to protect
interconnected computer systems from unauthorized access,
use, modification, or destruction. Network security contin-
ues to be a growing concern because the number of viruses,
intrusions, and other attacks on computer systems and
mobile devices increases every year. Without robust secu-
rity systems, financial transactions, business transactions,
as well as the larger infrastructure—the power grid and gas
pipelines—would be unable to efficiently function. Personal
information that exists in electronic formats is extremely
vulnerable. With the wide use of computer networking and
wireless communication systems for carrying data between
different devices, network security tools are needed to secure
the data during its transmission.

TABLE 31.2 (continued)
Full Disk Encryption Tools

Product Supported OS Cost Description

SafeNet ProtectDrive
http://www.safenet-inc.com/
Products/Data_Protection/
Disk_and_File_Encryption/
ProtectDrive.aspx

Windows N/A It integrates with Microsoft’s active directory, provides
single point of management, and allows password-based
removable media protection

Sophos Endpoint Security and
Data Protection

http://www.sophos.com/
products/enterprise/endpoint/
security-and-control/

Windows N/A It secures computers and sensitive data with antivirus,
antispyware, firewall, network access control, data loss
prevention, and encryption technologies in one solution.

dm-crypt
http://www.saout.de/misc/
dm-crypt/

Linux Free/open source Dm-crypt provides transparent encryption of block devices
under Linux kernel 2.6 or later. Dm-crypt encrypted
volumes can be accessed from Windows via FreeOTFE

K10922_C031.indd 515 7/5/2011 7:32:21 AM

516    Networks, Security, and Protection

To protect data, one should make sure that only trusted
software is installed in computers or mobile devices. For
secure operations, it is important to check that the sites are
SSL/TLS enabled and protected by strong cryptographic
techniques. It is equally important to use good passwords and
reset questions for your user accounts.

References

1.	 Anderson, R., Security Engineering, 2nd edn., Wiley, Hoboken,
NJ, 2008. Free online chapters can be downloaded at http://
www.cl.cam.ac.uk/~rja14/book.html (accessed on March 19,
2011).

2.	 Stallings, W., Cryptography and Network Security, 3rd edn.,
Prentice Hall, Upper Saddle River, NJ, 2003.

3.	 Shor, P., Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM Journal
of Computing 26: 1484–1509, 1997.

4.	 Heger, M., Cryptographers take on quantum computers, IEEE
Spectrum 46: 14, 2009.

5.	 Hoffstein, J., Pipher, J., and Silverman, J. H., NTRU: A Ring
Based Public Key Cryptosystem, In Lecture Notes in Computer
Science 1423, J.P. Buhler (ed.), Springer-Verlag, Berlin,
Germany, pp. 267–288, 1998.

6.	 Bonneau, J., Anderson, J., Anderson, R., and Stajano, F., Eight
friends are enough: Social graph approximation via public
listings, Proceedings of the Second ACM EuroSys Workshop
on Social Network Systems, Nuremberg, Germany, April 1–3,
2009, pp. 13–18, 2009.

7.	 Conti, G., Googling Security, Addison-Wesley Professional,
Indianapolis, IN, 2008.

8.	 Daswani, N., Kern, C., and Kesavan, A., Foundations of
Security: What Every Programmer Needs To Know, Apress,
New York, 2007.

9.	 Dingledine, R., Mathewson, N., and Syverson, P., Tor: The
second-generation onion Router, Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, August 9–13,
2004, pp. 303–320, 2004.

10.	 Viega, J. and McGraw, G., Building Secure Software, Addison-
Wesley Professional, Indianapolis, IN, 2001.

11.	 Viega, J. and Messier, M., Secure Programming Cookbook for
C and C++, O’Reilly Media, Sebastopol, CA, 2003.

12.	 Tanenbaum, A., Computer Networks, 4th edn., Prentice Hall,
Upper Saddle River, NJ, 2003.

13.	 Encryption, http://www.microsoft.com/windows/windows-
vista/features/bitlocker.aspx (accessed on May 15, 2010).

14.	 IronKey, https://www.ironkey.com/ (accessed on June 3, 2010).
15.	 BitArmor DataControl, http://www.bitarmor.com/ (accessed

on June 2010).
16.	 TrueCrypt, http://www.truecrypt.org/ (accessed on June 4,

2010).
17.	 DiskCryptor, http://diskcryptor.net/index.php/DiskCryptor_en

(accessed on May 15, 2010).
18.	 StorageCrypt, http://www.magic2003.net/ (accessed on June

15, 2010).
19.	 Dekart Private Disk, http://www.dekart.com/ (accessed on June

15, 2010).
20.	 FreeOTFE, http://www.freeotfe.org/ (accessed on June 16,

2010).
21.	 PGP Desktop Professional, http://www.pgp.com/ (accessed on

June 17, 2010).
22.	 McAfee Endpoint Encryption, http://www.mcafee.com/us/

enterprise/products/data_protection/data_encryption/end-
point_encryption.html (accessed on June 3, 2010).

23.	 GuardianEdge Hard Disk Encryption, http://www.guard-
ianedge.com (accessed on June 3, 2010).

24.	 BestCrypt, http://www.jetico.com/encryption-bestcrypt-
volume-encryption/ (accessed on June 7, 2010).

25.	 CREDANT Mobile Guardian, http://www.credant.com/
products.html (accessed on June 7, 2010).

26.	 SafeNet ProtectDrive, http://www.safenet-inc.com/Products/
Data_Protection/Disk_and_File_Encryption/ProtectDrive.
aspx (accessed on June 8, 2010).

27.	 Sophos Endpoint Security and Data Protection, http://www.
sophos.com/products/enterprise/endpoint/security-and-control/

28.	 dm-crypt http://www.saout.de/misc/dm-crypt/ (accessed on
May 6, 2010).

29.	 Security Innovation, Co., http://securityinnovation.com/
(accessed on May 18, 2010).

K10922_C031.indd 516 7/5/2011 7:32:21 AM

