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Abstract. [context and motivation] Information systems depend on personal 
data to individualize services. To manage privacy expectations, companies use 
privacy policies to regulate what data is collected, used and shared. However, 
different interpretations of the same terminology in these policies lead to privacy 
violations, or misunderstandings about what behavior is to be expected. [Ques-
tion/Problem] A formal ontology can help requirements authors to consistently 
check how their data practice descriptions relate to one another and to identify 
unintended interpretations. Constructing an empirically valid ontology is a chal-
lenging task since it should be both scalable and consistent with multi-user inter-
pretations. [Principle Ideas/Results] In this paper, we introduce a semi-auto-
mated semantic analysis method to identify ontology fragments by inferring hy-
pernym, meronym and synonym relationships from morphological variations. 
The method employs a shallow typology to categorize individual words, which 
are then matched automatically to 26 reusable semantic rules. The rules were 
discovered by classifying 335 unique information type phrases extracted from 50 
mobile privacy policies. The method was evaluated on 109 unique information 
types extracted from six privacy policies by comparing the generated ontology 
fragments against human interpretations of phrase pairs obtained by surveying 
human subjects. The results reveal that the method scales by reducing the paired 
comparisons by 74% and produces correct fragments with a 1.00 precision and 
0.59 recall when compared to human interpretation. [Contributions] The pro-
posed rules identify semantic relations between a given lexeme and its morpho-
logical variants to create a shared meaning between phrases among end users.  

Keywords: Requirements engineering, natural language processing, ontology. 

1 Introduction 
Mobile and web applications (apps) are increasingly popular due to the convenient ser-
vices they provide in different domains of interest. According to the PEW Research 
Center, 64% of Americans own a smart phone [22]. They found that smart phone users 
typically check health-related information online (62% of Americans), conduct online 
banking (54%), and look for job-related information (63%). To fulfill user needs and 
business requirements, these apps collect different categories of personal information, 
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such as friends’ phone numbers, photos and real-time location. Regulators require apps 
to provide users with a legal privacy notice, also called a privacy policy, which can be 
accessed by users before installing the app. For example, the California Attorney Gen-
eral’s office recommends that privacy policies list what kind of personally identifiable 
data is collected, how it is used, and with whom it is shared [10]. Privacy policies con-
tain critical requirements that inform stakeholders about data practices [1]. Due to dif-
ferent stakeholder needs, there can be disparate viewpoints regarding what is essentially 
the same subject matter [25]. Stakeholders use different words for the same domain, 
which reduces shared understanding of the subject and leads to a misalignment among 
designers’ intention, and policy writers and regulators expectation [6]. 

Data practices are commonly described in privacy polices using hypernymy [4], 
which occurs when a more abstract information type is used instead of a more specific 
information type. Hypernymy permits multiple interpretations, which can lead to am-
biguity in the perception of what exact personal information is used. To address this 
problem, companies can complement their policies with a formal ontology that explic-
itly states what kinds of information are included in the interpretations of data-related 
concepts. Initial attempts to build any ontology can require comparing each information 
type phrase with every other phrase in the policy, and assigning a semantic relationship 
to each pair. However, considering a lexicon built from 50 policies that contains 351 
phrases, an analyst must make (351×350)/2	 = 	61,425 comparisons, which is over 
200 hours of continuous comparison. 

In this paper, we describe a semi-automated semantic analysis method that uses 
lexical variation of information type phrases to infer ontological relations, such as hy-
pernyms. Instead of performing paired comparisons, the analyst spends less than one 
hour typing the phrases, and then a set of semantic rules are automatically applied to 
yield a subset of all possible relations. The rules were first discovered in a grounded 
analysis of information types extracted from 50 privacy policies for a manual ontology 
construction approach [13]. To improve the semantic relations inferred using these in-
itial set of rules, we established a ground truth by asking human subjects to perform the 
more time-consuming task of comparing phrases in the lexicon. We then compared the 
results of the semantic rules against these human interpretations, which led to identify-
ing additional semantic rules. Finally, we evaluated the improved semantic rules using 
109 unique information types extracted from six privacy policies, and human subject 
surveys to measure the correctness of the results produced by the semantic rules. 

This paper is organized as follows: in Section 2, we discuss the important terminol-
ogy and theoretical background; Section 3 presents a motivating example; in Section 4, 
background and related work are discussed; in Section 5, we introduce our semi-auto-
mated method for discovering ontology fragments consisting of hypernyms, meronyms 
and synonyms; In Section 6, we explain the experiment setup; in Section 7, we present 
results of evaluating this technique against human subject-surveyed information type 
pairs, before presenting our discussion and conclusion in Sections 8 and 9. 

2 Important Terminology and Theoretical Background 
In this section, we define the terminology and present the theoretical background.   
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2.1 Terminology 

• Hypernym – a noun phrase, also called a superordinate term, that is more generic than 
another noun phrase, called the hyponym or subordinate term. 

• Meronym – a noun phrase that represents a part of a whole, which is also a noun phrase 
and called a holonym. 

• Synonym – a noun phrase that has a similar meaning to another noun phrase. 
• Lexicon – a collection of phrases or concept names that may be used in an ontology. 
• Ontology – a collection of concept names and logical relations between these con-

cepts, including hypernymy, meronymy and synonymy, among others [17]. 
2.2 Theoretical Background on Description Logic 

Description Logic (DL) ontologies enable automated reasoning, including the ability to 
infer which concepts subsume or are equivalent to other concepts in the ontology. We 
chose the DL family 𝒜ℒ, which is PSPACE-complete for concept satisfiability and con-
cept subsumption. In this paper, reasoning in DL begins with a TBox T that contains a 
collection of concepts and axioms based on an interpretation 𝔗 that consists of a 
nonempty set Δ𝔗, called the domain of interpretation. The interpretation function .𝔗 
maps concepts to subsets of Δ𝔗: every atomic concept C is assigned a subset C𝔗 ⊆ Δ𝔗, 
the top concept ⊤ has the interpretation ⊤𝔗 = 	Δ𝔗.  

The 𝒜ℒ family includes operators for concept union and intersection, and axioms 
for subsumption, and equivalence with respect to the TBox. Subsumption is used to 
describe individuals using generalities, and we say a concept C is subsumed by a con-
cept D, written T ⊨ C ⊑ D, if C𝔗 ⊆ D𝔗 for all interpretations 𝔗 that satisfy the TBox 
T. The concept C is equivalent to a concept D, written T ⊨ C ≡ D, if C𝔗 = D𝔗  for all 
interpretations	𝔗 that satisfy the TBox T.  

The DL enables identifying which lexicon phrases directly or indirectly share mean-
ings, called an interpretation in DL. Each lexicon phrase is mapped to a concept in the 
TBox T. We express a hyponym concept C in relation to a hypernym concept D using 
subsumption T ⊨ C ⊑ D, and for two concepts C and D that correspond to synonyms, 
we express these as equivalent concepts T ⊨ C ≡ D. For meronymy, we define a part-
whole relation partOf	that maps parts to wholes as follows: a part concept C that has a 
whole concept D, such that T ⊨ C ⊑ (partOf	D). We express the DL ontology using 
the Web Ontology Language1 (OWL) version 2 DL and the HermiT2 OWL reasoner. 

3 Motivating Example 
We now provide an example statement from the WhatsApp privacy policy with example 
interpretations inferred from the statement to demonstrate the problem.  

Statement: You must provide certain devices, software, and data connections to 
use our Services, which we otherwise do not supply. 

In this statement, “device” is an abstract information type that can be interpreted in 
many ways. Here are three example strategies for obtaining an interpretation:  

                                                             
1 https://www.w3.org/TR/owl-guide/ 
2 http://www.hermit-reasoner.com/ 
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1. If device is a super-ordinate concept, then we infer that mobile device is a kind 
device, therefore, the collection of information also applies to mobile devices.  

2. If device is a kind of system with components, settings, etc., and we know that a 
device can have an IP address, then WhatsApp may collect device IP address. This 
interpretation is reached using a meronymy relationship between device and device 
IP address. 

3. By use both strategies (1) and (2), together, we can infer that the collection state-
ment applies to mobile device IP address, using both hypernymy and meronymy. 

These interpretations are based on human knowledge and experience, and there is a 
need to bridge the gap between linguistic information types in privacy policies and 
knowledge of the world. In the above examples, mobile device, device IP address, and 
mobile device IP address are variants of a common lexeme: “device.” We use the syn-
tactic structure of lexical variants to infer semantics and construct lexical ontologies 
that are used to bridge this knowledge gap. 

4 Related Work 
In requirements engineering, two approaches are defined for codifying knowledge: na-
ïve positivism, and naturalistic inquiry [19]. Positivism refers to the world with a set of 
stable and knowable phenomena, often with formal models. Naturalistic inquiry (NI) 
refers to constructivist views of knowledge that differ across multiple participant ob-
servations. The research in this paper attempts to balance among these two viewpoints 
by recognizing that information types are potentially unstable and intuitive concepts. 
Our approach permits different interpretations, before reducing terminological confu-
sion to reach a shared understanding through formal ontologies. We now review prior 
research on ontology in privacy. 
4.1 Ontology in Security and Privacy Policy 
Heker et al. developed a privacy ontology for e-commerce transactions which includes 
concepts about privacy mechanisms and principles from legislative documents [12]. 
Bradshaw et al. utilize an ontology that distinguishes between authorization and obli-
gations for a policy service framework that forces agents to check their behavior with 
specifications [5]. Kagal et al. constructed an ontology to enforce access control poli-
cies in a web service model [15]. Syed et al. developed an ontology that provides a 
common understanding of cybersecurity and unifies commonly used cybersecurity 
standards [24]. Breaux et al. utilize an ontology that includes simple hierarchies for 
actors and information types to infer data flow traces across separate policies in multi-
tier applications [7]. To our knowledge, our work is the first privacy-related lexical 
ontology that formally conceptualizes information types and their semantic relations. 
The initial version of this ontology has been used to find conflicts between mobile app 
code-level method calls and privacy policies [21]. 
4.2 Constructing an Ontology 

There is no standard method to build an ontology [25], yet, a general approach includes 
identifying the ontology purpose and scope; identifying key concepts leading to a lexi-
con; identifying relations between lexicon concepts; and formalizing those relations. A 
lexicon consists of terminology in a domain, whereas ontologies organize terminology 
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by semantic relations [14]. Lexicons can be constructed using content analysis of source 
text, which yields an annotated corpus. Breaux and Schaub empirically evaluated 
crowdsourcing to create corpora from annotated privacy policies [8]. Wilson et al. de-
scribed the creation of a privacy policy corpus from 115 privacy policies using 
crowdsourcing [26]. 

WordNet is a lexical database which contains English words and their forms cap-
tured from a newswire corpus, and their semantic relations, including hypernymy and 
synonymy [18]. Our analysis shows that only 14% of our lexicon was found in Word-
Net, mainly because our lexicon is populated with multi-word phrases. Moreover, mer-
onymy relations are missing from WordNet. 

Snow et al. presented a machine learning approach using hypernym-hyponym pairs 
in WordNet to identify additional pairs in parsed sentences of newswire corpus [23]. 
This approach relies on explicit expression of hypernymy pairs in text. Evans et al. 
identified and applied a set of 72 Hearst-related patterns [11] to 30 privacy policies to 
extract hypernymy pairs [4]. This approach yields hypernyms for only 24% of the lex-
icon. This means the remaining 76% of the lexicon must be manually analyzed to con-
struct an ontology. These approaches fail to consider the semantic relations between 
the morphological variants of a nominal, which may not be present in the same sentence 
as the nominal. Our proposed model identifies these variants with semantic relations. 

5 Ontology Construction Method Overview 
The ontology construction method (see Figure 1) consists of 7 steps: (1) collecting pri-
vacy policies; (2) itemizing paragraphs in the collected privacy policies; (3) annotating 
the itemized paragraphs by crowd workers based on a specific coding frame; (4) em-
ploying an entity extractor developed by Bhatia and Breaux [3] to analyze the 
annotations and extract information types which results in an information type lexicon 
(artifact A in figure 1); (5) pre-processing the phrases in the lexicon; (6) assigning role 
types to each pre-processed phrase that yields information type phrases with associated 
role sequences; (7) automatically matching the type sequence of each phrase to a set of 
semantic rules to yield a set of ontology fragments consisting of hypernym, meronym, 
and synonym relationships. Steps 1-3 are part of a crowdsourced content analysis task 
based on Breaux and Schaub [8]. Our contribution in this paper includes steps 5-7 which 
utilizes an information type lexicon to construct an ontology. 

   
Fig. 1. Overview of ontology construction method 
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5.1 Acquiring the Mobile Privacy Policy Lexicon 

The mobile privacy policy lexicon (artifact A in Figure 1) was constructed using a com-
bination of crowdsourcing, content analysis and natural language processing (NLP). In 
step 1 (see figure 1), we selected the top 20 mobile apps across each of 69 sub-catego-
ries in Google Play3. From this set, we selected apps with privacy policies, removing 
duplicate policies when different apps shared the same policy. Next, we selected only 
policies that match the following criteria: format (plain text), language (English), and 
explicit statements for privacy policy; yielding 501 policies, from which we randomly 
selected 50 policies. In step 2, the 50 policies were segmented into ~120 word para-
graphs using the method described by Breaux & Schaub (2014); yielding 5,932 crowd 
worker annotator tasks with an average 98 words per task for input to step 3. 

In step 3, the annotators select phrases corresponding to one of two category codes in 
a segmented paragraph as described below for each annotator task, called a Human In-
telligence Task (HIT). An example HIT is shown in figure 2.  
• Platform Information: any information that the app or another party accesses 

through the mobile platform which is not unique to the app. 
• Other Information: any other information the app or another party collects, uses, 

shares or retains.   
These two category codes were chosen, because our initial focus is on information 

types that are automatically collected by mobile apps and mobile platforms, such as “IP 
address,” and “location information.” The other information code is used to ensure that 
annotators remain vigilant.  

In step 4, we selected only platform information types when two or more annotators 
agreed on the annotation to construct the lexicon. This number follows the empirical 
analysis of Breaux & Schaub [8], which shows high precision and recall for two or more 
annotators on the same HIT. Next, we applied an entity extractor [3] to the selected an-
notations to itemize the platform information types into unique entities included in the 
privacy policy lexicon. 

 

Fig. 2. Example HIT shown to a crowd worker 

Six privacy experts, including the authors, performed the annotations. The cumulative 
time to annotate all HITs was 59.8 hours across all six annotators, yielding a total 720 
                                                             
3https://play.google.com  
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annotations in which two or more annotators agreed on the annotation. The entity ex-
tractor reduced these annotations down to 351 unique information type names, which 
comprise the initial lexicon.  

In step 5, the initial lexicon was reduced as follows: 
a. Plural nouns were changed to singular nouns, e.g., “peripherals” is reduced to “pe-

ripheral.” 
b. Possessives were removed, e.g., “device’s information” is reduced to “device infor-

mation.” 
c. Suffixes “-related,” “-based,” and “-specific” are removed, e.g., “device-related” is 

reduced to “device.” 
This reduced the initial lexicon by 16 types to yield a final lexicon with 335 types. 
5.2 Semantic Role Typing of Lexicon Phrases 
Figure 3 shows an example phrase, “mobile device IP address” that is decomposed into 
the atomic phrases: “mobile,” “device,” “IP,” “address,” based on a 1-level, shallow 
typology. The typology links atomic words from a phrase to one of five roles: (M) 
modifiers, which describe the quality of a thing, such as “mobile” and “personal;” (T) 
things, which is a concept that has logical boundaries and which can be composed of 
other things; (E) events, which describe action performances, such as “usage,” “view-
ing,” and “clicks;” (G) agents, which describe actors who perform actions or possess 
things; (P) property, which describes the functional feature of an agent, place or thing, 
such as “date,” “name,” “height;” and (α) which is an abstract type that indicates “in-
formation,” “data,” “details,” and any other synonym of “information.” In an infor-
mation type ontology, the concept that corresponds to the α type is the most general, 
inclusive concept. 

In step 6, the analyst reviews each information type phrase in the lexicon and as-
signs role types to each word. The phrase typing is expressed as a continuous series of 
letters that correspond to the role typology. Unlike quadratic number of paired compar-
isons required to identify relationships among lexicon phrases, this typing step is linear 
in the size of the lexicon. Furthermore, word role types can be reused across phrases 
that reuse words to further reduce the time needed to perform this step. Next, we intro-
duce the semantic rules that are applied to the typed phrases in the lexicon. 

 
Fig. 3. Example lexicon phrase, grouped and typed 

 
5.3 Automated Lexeme Variant Inference 
We now describe step 7, which takes as input the typed, atomic phrases produced in 
step 6 to apply a set of semantic rules to infer variants and their ontological relation-
ships, which we call variant relationships. Rules consist of a type pattern and an inferred 
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ontological relationship. The type pattern is expressed using the typology codes de-
scribed in Section 5.2. The rules below were discovered by the first and second author 
who classified the 335 pre-processed lexicon phrases using the typology as a second-
cycle coding, which is a qualitative research method [20]. Subscripts indicate the order 
of same-typed phrases in asymmetric ontological relations: 

Hypernymy Rules: 
H1. 𝑀_𝛼 implies that 𝑀_𝛼 ⊑ 𝛼, e.g., “unique information” is a kind of “infor-

mation.” 
H2. 𝑀B_𝑀C_𝛼 implies that 𝑀B_𝑀C_𝛼 ⊑ (𝑀B_𝛼 ⊔ 𝑀C_𝛼), e.g., “anonymous demo-

graphic information” is a kind of “anonymous information” and “demographic infor-
mation.” 

H3. 𝑀_𝑇B_𝑇Cimplies	𝑀_𝑇B_𝑇C ⊑ (𝑀_𝛼 ⊔	𝑇B_𝑇C) and 𝑇B_𝑇C ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝑀_𝑇B, e.g., 
“mobile device hardware” is a kind of “mobile information,” “device hardware,” and 
“device hardware” is a part of “mobile device.” 

H4. 𝑀_𝑇_𝛼	 implies 𝑀_𝑇_𝛼 ⊑ (𝑀_𝛼 ⊔ 𝑇_𝛼), e.g., “mobile device information” is 
a kind of “mobile information” and “device information.”  

H5. 𝑀_𝑇_𝑃 implies 𝑀_𝑇_𝑃 ⊑ 𝑀_𝛼	and	𝑀_𝑇_𝑃 ⊑ 	𝑝𝑎𝑟𝑡𝑂𝑓	𝑀_𝑇 and 𝑇_𝑃 ⊑
	𝑝𝑎𝑟𝑡𝑂𝑓	𝑀_𝑇, e.g., “mobile device name” is a kind of “mobile information” and a part 
of “mobile device” and “device name” is a part of “mobile device.”    

H6. 𝑀_𝐺_𝛼 implies that 𝑀_𝐺_𝛼 ⊑ (𝑀_𝛼 ⊔ 𝐺_𝛼), e.g. “aggregated user data” is a 
kind of “aggregated data” and “user data.” 

H7. 𝑇_𝛼	 implies 𝑇_𝛼 ⊑ 𝛼, e.g., “device information” is a kind of “information.” 
H8. 𝑇B_𝑇C_𝛼 implies 𝑇B_𝑇C_𝛼 ⊑ (𝑇B_𝛼 ⊔ 𝑇C_𝛼), e.g., “device log information” is a 

kind of “device information” and “log information.” 
H9. 𝐺_𝛼 implies that 𝐺_𝛼 ⊑ 𝛼, e.g. “user information” is a kind of “information.” 
H10. 𝐺_𝑇	 implies that 𝐺_𝑇 ⊑ (𝐺_𝛼 ⊔ 𝑇), e.g., “user content” is a kind of “user 

information” and “content.” 
H11. 𝐺_𝑃	 implies that 𝐺_𝑃 ⊑ (𝐺_𝛼 ⊔ 𝑃)	𝑎𝑛𝑑	𝐺_𝑃 ⊑ 	𝑝𝑎𝑟𝑡𝑂𝑓	𝐺, e.g., “user 

name” is a kind of “user information” and “name” is a part of “user.” 
H12. 𝐸_𝛼 implies that 𝐸_𝛼 ⊑ 𝛼, e.g. “usage data” is a kind of “data.” 
H13. 𝑇_𝐸 implies that 𝑇_𝐸 ⊑ (𝑇 ⊔ 𝐸 ⊔ 𝐸_𝑙𝑒𝑚𝑚𝑎), e.g., “page viewed” is a kind 

of “page,” “viewed,” and “view.” 
Meronymy Rules: 
M1. 𝑇B_𝑇C	implies 𝑇B_𝑇C ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝑇B	𝑎𝑛𝑑	𝑇B_𝑇C 	⊑ 	𝑇C, e.g., “device hardware” is 

a part of “device” and is a kind of “hardware.” 
M2. 𝑇B_𝑀_𝑇C implies 𝑇B_M_TC ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝑇B and 𝑀_𝑇C	𝑝𝑎𝑟𝑡𝑂𝑓	𝑇B, e.g., “device 

unique id” is a part of “device,” and “unique id” is a part of “device.” 
M3. 𝑇_𝑃 implies 𝑇_𝑃 ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝑇	𝑎𝑛𝑑	𝑇_𝑃	 ⊑ 𝑃, e.g., “device name” is a part of 

“device” and a kind of “name.” 
M4. 𝐸_𝑇 implies that 𝐸_𝑇 ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝐸	𝑎𝑛𝑑	𝐸_𝑇	 ⊑ 𝑇, e.g., “advertising identifier” 

is part of “advertising” and a kind of “identifier.” 
M5.  𝐸_𝑃 implies 𝐸_𝑃 ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝐸	𝑎𝑛𝑑	𝐸_𝑃	 ⊑ 𝑃, e.g., “click count” is part of 

“click” and a kind of “count.” 



9 

M6. 𝑇_𝐸_𝛼 implies that 𝑇_𝐸_𝛼 ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝑇	𝑎𝑛𝑑	𝑇_𝐸_𝛼 ⊑ (𝑇_𝛼 ⊔ 𝐸_𝛼), e.g, “lan-
guage modeling data” is a part of “language” and a kind of “language data” and “mod-
eling data.” 

M7. 𝑀B_𝑇B_𝑀C_𝑇C implies 𝑀B_𝑇B_𝑀C_𝑇C ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝑀B_𝑇B𝑎𝑛𝑑	𝑀B_𝑇B_𝑀C_𝑇C 	⊑
𝑀C_𝑇C , e.g., “mobile device unique identifier” is a part of “mobile device” and a kind 
of “unique identifier.” 

M8. 𝑇B_𝐸_𝑇C implies that 𝑇B_𝐸_𝑇C ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝑇B_𝐸	𝑎𝑛𝑑	𝑇B_𝐸_𝑇C ⊑ (𝐸_𝑇C ⊔
𝑇B_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ⊔ 𝑇C_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), e.g., “Internet browsing behavior” is a part of 
“Internet browsing” and a kind of “browsing behavior” and “Internet information” and 
“behavior information.” 

M9. 𝑇_𝐸_𝑃 implies that 𝑇_𝐸_𝑃 ⊑ 𝑝𝑎𝑟𝑡𝑂𝑓	𝑇_𝐸	and	𝑇_𝐸_𝑃 ⊑ (𝐸_𝑃 ⊔ T_𝛼 ⊔ 𝑃), 
e.g., “website activity date” is a part of “website activity” and a kind of “activity date,” 
“website information,” and “date.” 

Synonymy Rules: 
S1. 𝑇 implies 𝑇 ≡ 𝑇_𝛼, e.g., “device” is a synonym of “device information.” 
S2. 𝑃 implies 𝑃 ≡ 𝑃_𝛼, e.g., “name” is a synonym of “name information.” 
S3. 𝐸 implies	≡ (𝐸_𝛼 ⊔ 𝐸_𝑙𝑒𝑚𝑚𝑎), e.g., “views” is a synonym of “views infor-

mation” and “view.” 
S4. 𝐺 implies 𝐺 ≡ 𝐺_𝛼, e.g., “user” is a synonym of “user information.” 
The automated step 7 applies the rules to phrases and yields variant relationships 

for evaluation in two steps: (a) the semantic rules are matched to the typed phrases to 
infer new candidate phrases and relations; and (b) for each inferred phrase, we repeat 
step (a) with the inferred phrase. The technique terminates when no rules match a given 
input phrase. An inferred phrase can be either explicit concept name which refers to an 
inferred phrase that exists in the lexicon, or tacit concept name referring to an inferred 
phrase that does not exist in the lexicon.  

For example, in Figure 3, we perform step (a) by applying the rule H5 to infer that 
“mobile device IP address” is a kind of “mobile information” and a part of “mobile 
device IP” and “device IP address” is a part of “mobile device IP.” Rule H5 has the 
implication that 𝑀_𝑇_𝑃 ⊑ 𝑀_𝛼, which yields an information class for M_α that in-
cludes information about things distinguished by a modifier M. In practice, this includes 
all things personal, financial, and health-related, and, in this example, all things mobile. 
Continuing with the example, the phrases “device IP address” and “mobile device IP” 
are not in the lexicon, i.e., they are potentially implied or tacit concept names. Thus, 
we re-apply the rules to “device IP address” and “mobile device IP.” Rule M3 matches 
“device IP address” typing to infer that “device IP address” is part of “device IP” and a 
kind of “address.” Since “device IP” is not in the lexicon, we re-apply the rules to this 
phrase. Rule M1 matches the type sequence of this phrase that yields “device IP” is a 
part of “device” and “device IP” is a kind of “IP.” Both “device” and “IP” are explicit 
concept names in the lexicon. Therefore, we accept both inferences for further evalua-
tion. We continue performing step (a) on “mobile device IP” by applying rule H3 that 
infers additional concept names and relations. The axioms from re-applying the rules 
to the explicit and tacit concepts names yield ontology fragments. We evaluate these 
axioms using the individual preference relationships described in the next section. 
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6 Experiment Setup 
In psychology, preferences reflect an individual’s attitude toward one or more objects, 
including a comparison among objects [16]. We designed a survey to evaluate and im-
prove the ontological relationship prospects produced by step 7. We used 50 privacy 
policies and 335 pre-processed unique information types as training set to improve the 
semantic rules. Because the prospects produced by the semantic rules all share at least 
one common word, we asked 30 human subjects to compare each 2,365 phrase pairs 
from the lexicon that share at least one word. The survey asks subjects to classify each 
pair by choosing a relationship from among one of the following six options: 

s: Phrase A is subsumed by phrase B in pair (A, B) 
S: Phrase B is subsumed by phrase A in pair (A, B) 
P: Phrase A is part of Phrase B in pair (A, B) 

W: Phrase B is part of Phrase A in pair (A, B) 
E: Phrase A is equivalent to phrase B in pair (A, B) 
U: Phrase A is unrelated to phrase B in pair (A, B) 

Figure 4 presents a survey excerpt: the participant checks one option to indicate the 
relationship, and they can check a box to swap the word order, e.g., in the first pair, the 
subject can check the box to indicate that “web browser type” is part of “browser.” We 
recruited 30 participants to compare each pair using Amazon Mechanical Turk, in which 
three pairs were shown in one Human Intelligence Task (HIT). Qualified participants 
completed over 5,000 HITs, had an approval rate of at least 97%, and were located in 
the United States. The average time for participants to compare a pair is 11.72 seconds. 

The participant results are analyzed to construct a ground truth (GT) in Description 
Logic. In the results, participants can classify the same phrase pair using different onto-
logical relations. There are several reasons that explain multiple ontological relations for 
each pair: participants may misunderstand the phrases, or they may have different expe-
riences that allow them to perceive different interpretations (e.g., “mac” can refer to both 
a MAC address for Ethernet-based routing, and a kind of computer sold by Apple, a 
manufacturer). To avoid excluding valid interpretations, we built a multi-viewpoint GT 
that accepts multiple, competing interpretations. For the entire survey results, we define 
valid interpretations for a phrase pair to be those interpretations where the observed 
number of responses per category exceeds the expected number of responses in a Chi-
square test, where p<0.05, which means there is at least a 95% chance that the elicited 
response counts are different than the expected counts. The expected response counts for 
an ontological relationship are based on how frequently participants chose that relation-
ship across all comparisons. We constructed a multi-viewpoint GT as follows: for each 
surveyed pair, we add an axiom to GT for the relation category, if the number of partic-
ipant responses is greater than or equal to the expected Chi-square frequency; except, if 
the number of unrelated responses exceeds the expected Chi-square frequency, then we 
do not add any axioms. We published the ground truth dataset4 that includes phrase pairs, 
the ontological relation frequencies assigned by participants to each pair, and the Chi-
square expected values for each relation per pair.  

We measure the number of true positives (TPs), true negatives (TNs), false positives 
(FPs), and false negatives (FNs) by comparing the variant relationships with the ground 
                                                             
4 http://gaius.isri.cmu.edu/dataset/plat17/preferences.csv 
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truth ontology to compute Precision = TP/(TP+FP) and Recall = TP/(TP+FN). A variant 
relation is a TP, if it is logically entailed by GT, otherwise, that relationship is a FP. An 
unrelated phrase pair from preferences results is considered as TN, if we cannot match 
any inferred variant relationship with it. For all phrase pairs with valid interpretations 
(hypernymy, meronymy, synonymy) that do not match an inferred variant relationship, 
we count these as FN. We use logical entailment to identify true positives, because sub-
sumption is transitive and whether a concept is a hypernym to another concept may rely 
on the transitive closure of that concept’s class relationships. Next, we present results 
from improving the semantic rules using the training dataset and describe our approach 
for building the test set to evaluate the final rule set. 

 

 

 

 

Fig. 4. Example survey questions to collect relation preferences 

7 Evaluation and Results 
This section presents the results for the training and testing of the approach. The training 
has been done in two incremental phases: (1) we first evaluate a set of 17 initial rules 
applied to the 335 pre-processed unique information types; (2) based on the results of 
phase 1 and analysis of false negatives, we extend the initial rules to 26 rules and evalu-
ate the application of them again using the 335 pre-processed unique information types. 
In the testing stage, we utilize an additional 109 pre-processed unique information types 
to evaluate the extended rule set. 

7.1 Preference Relations with Initial Rule Set 
We began with a set of 17 rules that summarized our intuition on 335 pre-processed 
unique information types for variant relationship inference. After typing and decompo-
sition, the technique yields 126 explicit concept names from the original lexicon, 182 
potential tacit concept names, and 1,355 total axioms. Comparing the inferred relations 
with the individuals’ preferences in the training ground truth (GT) results in 0.984 pre-
cision and 0.221 recall. Overall, the method correctly identifies 256/1,134 of related 
phrase pairs in the training GT. The total number of true positives (TPs), true negatives 
(TNs), false positives (FPs), and false negatives (FNs) are 256, 1092, 4, and 901 respec-
tively. To improve the results, we analyzed the FNs and extended the initial 17 rules to 
26 rules that are discussed in Section 5.3.  Next, we report the results on applying the 
extended rules to 335 pre-processed unique information types. 
7.2 Preference Relations with Extended Rule Set 

The extended rule set consists of the initial and nine additional rules to improve the 
semi-automated technique. We also extended rules H3 and H5 with a new meronymy-
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inferred relationship as defined in Section 5.3. Using the extended rule set, the technique 
yields 186 explicit concept names, 286 potential tacit concept names, and 2,698 total 
axioms. The ontology fragments computed by applying the extended rule set can be 
found online in the OWL format.5 Table 1 shows the results for the semi-automated 
method with the initial and extended rule sets. This table also includes number of hy-
pernymy, meronymy, and synonymy relations that are inferred using two rule sets. 
Overall, the extended rule set correctly identifies 782 preference relations out of 1,134 
related pairs in the training GT. Also, the recall is improved to 0.569 with the extended 
rule set. 

The total number of TPs, TN, FPs, and FNs are 782, 878, 3, and 590 respectively. 
We observed that 477/590 of false negatives (FNs) depend on semantics beyond the 
scope of the 6-role typology. For example, the training GT shows the participants 
agreed that “mobile phone” is a kind of “mobile device,” possibly because they under-
stood that “phone” is a kind of “device.” We observed that 22/477 of semantically re-
lated FNs exclusively concern synonyms that require additional domain knowledge, 
e.g., “postal code” is equivalent to “zip code,” or in the case of acronyms, “Internet 
protocol address” is equivalent to “IP address.” Moreover, 10/477 of semantically re-
lated FNs exclusively concern meronymy, e.g., “game activity time” is a part of “game 
system.” Also, only 1/477 of semantically related FNs is exclusively mentioned for 
hypernymy: “forwarding number” is a kind of “valid mobile number.” Finally, 444/477 
of semantically related FNs can have multiple valid interpretations (meronymy, hyper-
nymy, and synonymy) in the training GT. 

Table 1. Evaluations of Relations using Initial and Extended Rule Set on Training GT 

 Initial Rules Extended Rules 
Explicit / Tacit Concept Names 126 / 182 194 / 289 
Number of Inferred Hypernyms 580 1,122 
Number of Inferred Meronyms 192 535 
Number of Inferred Synonyms 583 1041 
Precision  0.984 0.996 
Recall 0.221 0.569 

 

In addition, we discovered that 53/590 of FNs were due to individual preference-errors 
that were inconsistent with the automated method, e.g., individual preferences identi-
fied “mobile device identifier” equivalent to “mobile device unique identifier,” which 
ignores the fact that an identifier is not necessarily unique. Finally, we identified 60/590 
relations that can be identified by introducing new semantic rules.  

The training GT also contains a special relationship identified by individuals be-
tween 40 pairs that we call part-of-hypernymy. For example, individuals identified “de-
vice id” as a part of “mobile device,” because they may have assumed that mobile de-
vice (as a hyponym of device) has an id. Therefore, we extended rules H3 and H5 to 
infer part-of-hypernymy in the extended rule set. 

                                                             
5 http://gaius.isri.cmu.edu/dataset/plat17/variants.owl 



13 

7.3 Method Evaluation 

To evaluate our extended rule set, we randomly selected six additional privacy policies 
from the pool of 501 policies discussed in Section 5.1. We used the same approach and 
annotators from Section 5.1 to extract the unique information types and construct the 
test lexicon. The resulting 110 information types were reduced to 109 information types 
which were then typed and analyzed by the extended rule set, resulting in 76 explicit 
concept names, 139 potential tacit concept names, and 831 total axioms. We acquired 
the preference relations for the test lexicon by surveying 213 phrase pairs resulting in 
121 related phrase pairs included in testing ground truth (GT) using the method dis-
cussed in Section 66. In further analysis, the relations in the testing GT were compared 
with the relations provided by the extended rule set. Overall, the extended rule set cor-
rectly identifies 79 preference relations out of 121 related pairs in the training GT. Table 
2 presents the results including the precision and recall for this analysis. The ontology 
fragments computed using the extended rule set are online in OWL.7 

Table 2. Evaluations of Relations using Extended Rule Set on Testing GT 
 Extended Rules 

Explicit / Tacit Concept Names 194 / 289 
Number of Inferred Hypernyms 385 
Number of Inferred Meronyms 80 
Number of Inferred Synonyms 366 
Precision  1.00 
Recall 0.593 

 
In summary, the results show total number of 79 TPs, 80 TNs, zero FPs, and 54 FNs. 
We observed that 44/54 of FNs in the test set depend on semantics beyond the scope of 
the role typology and syntactic analysis of information types. We published a list of these 
concept pairs, including the human preferences.8 Some examples include: “device open 
udid” as a kind of “device identifier,” “in-app page view” as a kind of “web page vis-
ited,” and “page viewed” as equivalent to “page visited.” We also observed 7/54 of FNs 
that requires introducing six new rules. Finally, by comparing the total number of TPs 
and TNs with 213 phrase pairs, we can conclude that the semi-automated semantic anal-
ysis method can infer Z[\]^

CB_
×100 = 74% of paired comparisons.  

8 Discussion 
We now discuss and interpret our results and threats to validity. 
8.1 Interpretation of Extended Rule Set Results 
Comparing the ontology fragments to preferences, we observe that preferences imply 
new axioms that explain a portion of the FNs in training and testing. These preferences 
are influenced by individual interpretations of relations between two phrases. Analyzing 
these FNs, we identified four cases where individuals report incorrect interpretations: 
(1) Modifiers’ roles in a phrase are ignored and an equivalent relationship is identified 

for a pair of phrases, e.g., “unique id” and “id.” 
                                                             
6 http://gaius.isri.cmu.edu/dataset/plat17/study-utsa-prefs-test-set.csv  
7 http://gaius.isri.cmu.edu/dataset/plat17/variants-test-set.owl 
8 http://gaius.isri.cmu.edu/dataset/plat17/supplements-test-set.csv 
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(2) Different modifiers are identified as equivalent, e.g., “approximate location infor-
mation” and “general location information.” 

(3) The superordinate and subordinate phrases relationship is ignored and an equivalent 
relation is identified, e.g., “hardware” and “device”, “iPhone” and “device.” 

(4) Information as a whole that contains information is confused with information as a 
sub-ordinate concept in a super-ordinate category, e.g., “mobile application ver-
sion” is a part of, and a kind of, “mobile device information.” 
One explanation for the inconsistencies is that individuals conflate interpretations 

when comparing two phrases as a function of convenience. Without prompting individ-
uals to search their memory for distinctions among category members (e.g., iPhone is 
different from Android, and both are kinds of device), they are inclined to ignore these 
distinctions when making sense of the comparison. In requirements engineering, this 
behavior corresponds to relaxing the interpretation of constraints or seeking a narrower 
interpretation than what the natural language statement implies. When relaxing con-
straints, stakeholders may overlook requirements: e.g., if “actual location” and “physical 
location” are perceived as equivalent, then stakeholders may overlook requirements that 
serve to more closely approximate the “actual” from noisy location data, or requirements 
to acquire location from environmental cues to more closely approximate a “physical” 
location.  Furthermore, this behavior could yield incomplete requirements, if analysts 
overlook other, unstated category members. 
8.2 Threats to Validity 

In this section, we discuss the internal and external validity for our approach. 
Internal Validity. Internal validity is the extent to which observed causal relations 

actually exist within the data, and whether the investigator’s inferences about the data 
are valid [27]. In this method, the inferred semantic relations are highly dependent on 
the role typing system and any inconsistencies in the types affect the final results. For 
this reason, two analysts assigned roles to the phrases in the training lexicon. We used 
Fliess’ Kappa to measure the degree of agreement for this task [9]. Two analysts 
reached Kappa of 0.72, which shows a high above-chance agreement. However, there 
is still a need for automating the role typing system to reduce potential inconsistencies. 

External Validity. External validity is the extent to which our approach generalizes 
to the population outside the sample used in the study [27]. Based on our study, 7/54 of 
false negatives in test set evaluation require six new semantic rules. Moreover, we can-
not claim that the extended rule set will cover all the information types extracted from 
privacy policies, since we only analyzed specific information types called platform in-
formation. To assure that the rules have saturated for information type analysis, further 
studies on different information types are required.  

9 Conclusion and Future Work 
Privacy policies contain legal requirements with which company information sys-

tems need to comply. In addition, they serve to communicate those requirements to other 
stakeholders, such as consumers and regulators. Because stakeholders use different 
words to describe the same domain concept, how these policies use abstraction and var-
iability in concept representation can affect ambiguity and reduce the shared understand-
ing among policy authors, app developers, regulators and consumers. To address this 
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problem, we present results of a semi-automated semantic analysis method to construct 
privacy policy ontologies that formalize different interpretations of the related concepts.  

The method was evaluated on 213 pairs of phrases that share at least one word from 
a set of 109 unique phrases in the lexicon acquired from six mobile app privacy policies. 
The individual preference data set contains 80/213 pairs that are identified as unrelated 
(37%) and 121/213 relations identified as related through hypernymy, meronymy, and 
synonymy in the testing GT. The technique yields 79/121 of axioms in testing GT with 
an average precision=1.00 and recall=0.59. 

In future work, we envision a number of extensions. To increase coverage, we pro-
pose to formalize the rules as a context free grammar with semantic attachments using 
rule-to-rule hypothesis [2]. We also envision expanding the knowledge base to include 
relations that cannot be identified using syntactic analysis such as hypernymy between 
“phone” and “device.” To improve typing, we explore identify role types associated 
with part-of-speech (POS) tagging and English suffixes. However, preliminary results 
on 335 pre-processed phrases from the training lexicon shows only 22% of role type 
sequences can be identified using POS and English suffixes. Therefore, instead relying 
on POS and suffix features [28], we envision using deep learning methods to learn the 
features for identifying the semantic relations between phrases. Finally, we envision 
incorporating these results in requirements analysis tools to help detect and remediate 
variants that can increase ambiguity and misunderstanding. 
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