
GUILeak: Identifying Privacy Practices on
GUI-Based Data

Xiaoyin Wang1, Xue Qin1, Mitra Bokaei Hosseini1,
Rocky Slavin1, Travis D. Breaux2, and Jianwei Niu1

1University of Texas at San Antonio, San Antonio, TX, USA
2Carnegie Mellon University, Pittsburgh, PA, USA

{xiaoyin.wang, xue.qin, mitra.bokaeihosseini, rocky.slavin, jianwei.niu}@utsa.edu,
breaux@cs.cmu.edu

Abstract—As the most popular mobile platform, Android
devices have millions of users around the world. As these
devices are used everyday and collects various data from users,
effective privacy protection has been a well known challenge
in the Android world. Existing privacy-protection approaches
focus on information accessed from Android API methods, such
as location and device ID, while existing security-enhancement
approaches are not fine-grained enough to map user input data
to concepts in privacy policies. In this paper, we proposed a novel
approach that automatically detects privacy leakage on user input
data for a given Android app, and determines whether such
leakage may violate privacy policies coming with the Android
app. For evaluation, we applied our approach to 80 popular
apps from two important app categories: finance and health.
The results show that our approach is able to detect 20 strong
violations, and 10 weak violations from the studied apps.

I. INTRODUCTION

The Android mobile platform supports millions of users and
their mobile devices across more than 190 countries around
the world. In February 2016, the Google Play Store, which
provides users access to new applications (apps), surpassed
two million apps available for installation [1]. Increasingly,
Android apps use personal information to provide services to
users. According to a recent 2015 study, 500 million people
were using personal health apps, which can collect information
on body measurements, diet, exercise, and medical treatment,
among others. Similarly, Mint, one of the most popular per-
sonal finance apps, tracks more than 80 billion dollars in credit
and debit transactions, and almost a trillion dollars in loans
and assets. What users of these health and finance apps may
not understand, however, is how their personal information is
collected, used and shared by these apps.

With increased access to personal information and the
scale of mobile app deployment, the need for tools to help
developers to protect user privacy is increasingly important.
Google encourages app developers to provide users with
privacy policies that describe how personal information is
collected from users [24]. These policies are written in natural
language and aim to describe the ways that an app collects,
uses, and shares user data. Such policies are also meant to
fulfill legal requirements to protect customer privacy. Prior
work by Slavin et al. [24] traced privacy policy statements

about collection to Android platform API calls using an
ontology to link policy semantics with static program analysis.
These API calls concern personal data that is automatically
collected, such as user location, device identifiers, and sensor
data. However, this work was limited because it did not address
personal data that users provide directly through an app’s user
interface. In health and finance apps, this type of collection
is especially sensitive, because only users can provide this
data. User-provided information presents two new technical
challenges that we address in this paper:

TC1: Vague and Unbounded User-Provided Information
Types. The types of information collected through the Android
API are limited by hardware and platform capability, thus a
mapping from API methods to canonical policy terms is con-
strained and well-defined. In contrast, developers can design
novel user interfaces that ask users to provide potentially any
kind of information, which includes unstructured and semi-
structured personal information in different formats.

TC2: Varying User Interface Implementation Tech-
niques. Unlike API method calls that can be detected by scan-
ning the app byte code, user interfaces can be implemented
by static declarations in resource files, or programmatically
in the code. Techniques, such as SUPOR [13] and UIPicker
[17], can identify input views receiving sensitive user input,
but they do not map these views to relevant policy terms, nor
do they identify programmatically-generated input views.

In this paper, we present a novel technique to detect privacy-
policy violations on user-provided information for Android
apps. The approach maps each user interface (GUI) input view
to terminology in privacy policies, and then performs static
information flow analysis to detect illegal information flows
in the app’s code that violate relevant policy statements. To
address TC1, For each input view in a new app, we use various
phrase similarity measurements to map the graphics user inter-
face (GUI) labels together with its context to ontology phrases.
The ontology is further matches to the privacy policy text. To
address TC2, we developed a GUI string analysis technique to
estimate the structure of programmatically-generated UIs and
collect all UI labels in the context of a given input view. Our
analysis is based on GATOR [22], an existing GUI analysis
framework.



To validate our approach, we focus on two app cate-
gories (domains) in the Google Play Store1: Health and
Finance. These two categories are important, because they
access sensitive personal information. Furthermore, these two
domains are potentially regulated by the Gramm-Leach-
Bliley Act (GLBA) [8], Right to Financial Privacy Act
(RFPA) [11], Health Insurance Portability and Accountability
Act (HIPAA) [21], and Payment Card Industry Data Security
Standard (PCI DSS) [9]. In our experiment, we collected 100
of the most popular apps and their privacy policies (50 apps for
each category), and we used 20% of the apps (10 apps from
each category) as a training set. Using the privacy policies
from the training apps, we constructed an ontology for each
of the two domains. Then, we applied our approach to the
remaining 80 apps, and detected 30 violations, which we
manually confirmed by recording the runtime network requests
with Xposed framework2.

In this paper, we present four contributions as follows.
• We developed a novel approach including GUI analysis

and phrase mapping techniques to detect inconsistencies
between the information collection statements in an app’s
privacy policy and the actual collection behavior of user
input data in the app’s code.

• Using existing crowd sourcing tools, we developed pri-
vacy ontologies for two privacy-sensitive domains: health
and finance, which contain 332 and 209 ontology terms,
respectively.

• We carried out an experiment on 80 of the most popular
apps in health and finance domains and detected 20 strong
violations and 10 weak violations.

This paper is organized as follows: in Section III, we
review the background upon which we based our approach
and introduce relevant concepts; in Section IV, we describe
the approach we used for our framework; Section V describes
the evaluation of our approach followed by discussion of
the results and approach in Section VI; Section VII includes
related work; and we conclude and discuss future work in
Section VIII.

II. MOTIVATING EXAMPLE

In this section, we give a real example showing how GUI
views, especially user input views can be implemented in
different ways, and the difficulties of understand input views.

Dynamic Layouts. A layout in the Android framework
defines the visual structure of a UI including locations for
views, buttons, windows, and widgets. Layouts are defined in
two ways: either they are constructed using XML to define the
placements of elements, or they are created programmatically
at runtime. The second way is necessary when layouts need
to be dynamically changed based on runtime states. These
dynamic layouts eliminate the need to pre-draw multiple UIs.
These two ways can be combined flexibly. For example, a
label or view can be programmatically added to a static defined
layout (typically after inflation).

1http://play.google.com
2http://repo.xposed.com

Fig. 1: User Interface Screenshots from Pacer

Fig. 2: Virtual Invoke Example in GoalSetCheckingInReqDialog.smali

The example in Figure 1 shows two UI screenshots for
Pacer, a popular fitness app, depicting the UI when user creates
a new exercise goal. Besides editing goal descriptions and
changing goal types such as steps and diet, the user also needs
to set the check-in requirement by clicking the button in the
red oval on the left screenshot. The right screenshot shows the
pop-up window that appears after user clicking this button.
Here, users will be asked to type in the desired number of
check-in steps.

The right screenshot utilizes a combination of both static

Fig. 3: Partial Code from common input dialog.xml

Fig. 4: Partial Code from goal create details fragment.xml



and dynamic layouts. Figure 3 shows the static definition of
common_ input_dialog.xml, which corresponds to the
right screenshot. From the figure, we can see that, it is actually
a layout template which defines the basic layout structure
and the font / style information. All the labels (e.g., Dialog
title is undefined) and ids (e.g., “et content” as the id of the
input box) are vaguely defined. Thus this layout template can
be used in multiple places in the project for user input, and
the labels (e.g., Set Check-In Requirements for title) will be
transferred from the parent activity (e.g., the activity in the
left screenshot) when the dialog is opened.

In particular, Figure 2 shows the smali code (decoded An-
droid bytecode) in InputDialogFragment.smali which
dynamically adds the label for “Set Check-In Requirement”.
The string is fetched in line 1 as v2 with the id 0x7f07011a.
Here, the id references the appropriate string in string.xml
based on the context. In line 4, v2 is passed as a title resulting
in “Set Check-In Requirement” being dynamically defined as
the title.

GUI Context. Just like the contexts in natural language
paragraphs, input views can only be well understood with
neighboring / ancestor views. In the right screenshot, without
seeing the title, it is not possible to understand what is
supposed to be input. Furthermore, the left screenshot that
leads to the right dialog also provides context information for
the dialog. This invoking view can be found in the resource
layout file goal_create_details_fragment.xml, as
shown in Figure 4, whose id is .

To sum up, GUI context is essential in understanding
user input views and mapping the views to privacy-policy
phrases, but the dynamic implementation of Android GUI
makes identification of GUI context more difficult. In our
paper, we propose input context analysis to handle dynamic
implementation and hierarchical mapping to map input views
to privacy policy phrases based on collected GUI context.

III. BACKGROUND

In this section, we introduce some background knowledge
about the existing techniques upon which our approach is
based.
A. GATOR

GATOR[22] is a program analysis toolkit for Android that
takes the app as its input and output an series of xml files,
where each xml file estimates the runtime view hierarchy of
an activity or a dialog. The estimated runtime view hierarchy
is of the same form of static layout files, but may with extra or
missing views due to imprecision of static analysis. We present
a sample snippet of our adapted GATOR in Section IV-B3. To
perform the estimation, GATOR first generates an event flow
graph from the event handlers, and then iteratively traverse the
graph to add views to activities / dialogs (by scanning Android
API methods that add views) until a fix point is reached.
B. FlowDroid

FlowDroid[3] is a novel and highly precise static taint
analysis [10] tool for Android applications. A precise model

of Android’s lifecycle allows the analysis to properly handle
callbacks invoked by the Android framework, while context,
flow, field, and object-sensitivity allows the analysis to reduce
the number of false alarms. For our approach, we configure
FlowDroid sources and sinks defined by the SuSi project
[20]. SuSi is a tool for the fully automated classification and
categorization of Android sources and sinks. In our analysis,
the source is often the information, such as unique identifier,
location, etc., and the sink can be a network, file, etc. Since
the information in an application can flow back and forth,
we use SuSi to automatically classify the sources and sinks.
After observing the user data flow within the application from
sources to sinks, we are able to cognize what data has been
collected from the sources such as input control and what data
has been sent out to sinks such as dataset servers, Internet, or
third party companies. And once we have all the input control
APIs, we are be able to detect whether the data flow goes to
a sink by applying the FlowDroid.
C. Xposed

The Xposed framework 3 is a tool for the modification of
compiled Android apps so they can behave differently at run-
time. Xposed takes advantage of the Zygote Android daemon,
from which all Android apps are forked. By overwriting the
process with its own, the framework (and, by extension, its
modules) is able to insert hooks into the bytecode of the app
allowing the module to perform custom code before and after
hooked method calls. Xposed is installed as a normal Android
app and runs as a service on the device and thus is able to
replace Zygote at boot time. Modules are also written and
installed as Android apps. Due to the nature of the framework,
Xposed requires root access to the device it is installed upon.
The Xposed framework is used in our validation described in
Section V-B3.

IV. APPROACH

The overview of our approach is presented in Figure 5,
which consists of two major parts: the manual preparation of
domain-specific privacy ontology, and the automatic violation
detection given an app and its privacy policy. In the first
part, we use the privacy-policy phrases extracted by crowd
workers to manually build an ontology that describes semantic
relationships between phrases. In the second part, we first
apply input context analysis to the app to extract its user input
viewsand their context GUI labels. Then, we apply information
flow analysis with the extracted user input viewsas data
sources to further detect the user input viewswhose received
user input flows to network API method invocations, which
we referred to as network-targeted user input views. Finally,
through phrase similarity measurement and pre-constructed
phrase-relations in our ontology, we map the context GUI
labels of network-targeted user input viewsto the app’s privacy
policy. If the labels can be mapped to one or more privacy
phrases in the ontology, but such phrases are all missing in
the policy, we are able to detect a privacy-policy violation. We
next introduce the ontology construction in Section IV-A, input

3http://repo.xposed.com



context analysis in Section IV-B, and the mapping of GUI
labels to policy phrases for violation detection in Section IV-C.
A. Domain Specific Privacy Policy Ontology

To construct the ontology, we perform two main steps: (1)
construct the privacy policy lexicon from information types
annotated in the privacy policies; and (2) identify semantic
relationships between phrases in the privacy policy lexicon.
In the ontology, we only consider hypernyms, which is an
ontological relationships from a more generic phrase to a
more specific concept; meronym, which is a relationships
between a whole and it’s parts; and synonyms, which is a
relationships between two concepts that have nearly same
meaning. For example, “credit score” is a part of “credit”
and “credit” is subordinate concept to the hypernym“financial
information.” In addition, the concept indicated by “zip code”
is synonymous to “postal code.” The ontology can be used
for automatic misalignment detection between privacy policies
and application code. We now describe how we obtain each
lexicon and create the ontology.

1) Extracting the Privacy Policy Lexicon: We used crowd-
sourcing, content analysis, and natural language processing
(NLP) to construct the privacy policy lexicon. First, we se-
lected 5 top applications across four sub-categories (personal
budget, banks, personal health, and insurance-pharmacy) in
Google Play4, to yield 10 total apps for the finance and
health categories. Next, we segment the privacy policies into
120 word paragraphs using the method described by Breaux
and Schaub [6] which yields annotation tasks in each major
domains. Figure 6 shows an example annotation task, wherein
annotators are asked to annotate phrases based on the follow-
ing coding frame:

• User Provided Information: any information that the user
explicitly provides to the app or other party

• Automatically Collected Information: any information
that the app or another party collects or accesses auto-
matically

• Uncertain or Unclear: any information that the app or the
other party collect or accesses and it is unclear whether
the information is provided by the user or is collected
automatically

The user provided information annotations describe types that
are explicitly stated in the policies. However, policies do not
always mention how or from whom they collect the informa-
tion. For example, in Figure 6 it is unclear how “personal
information” is collected. To build the privacy policy lexicon,
we consider both the annotations user provided information,
and uncertain or unclear, in case the policy author described
the user provided collection in an unclear manner. The re-
maining code, automatically collected information, ensures
that annotators pay close attention how information collection
is described in the policy. Among all annotations collected,
we only add annotations to the lexicon where two or more
annotators agreed on the annotation. This decision follows the
empirical analysis of Breaux and Schaub [6], which shows

4https://play.google.com

high precision and recall for two or more annotators. In the
next step, we applied an entity extractor [5] to the selected
annotations to itemize the platform information types into
unique entities. Finally, the unique information types are added
to the finance or health lexicon depending on which sub-
category they belong to.

We recruited nine crowd workers to annotate the 20 privacy
policies. In addition to collecting annotations from AMT
crowd workers, five of the authors annotated the same privacy
policies. We constructed two lexicons in each domain (health
and finance) using the annotations from both groups. Com-
paring the authors lexicon with crowd workers, in the finance
domain both groups agreed on 69 unique information types
that can be collected though UI input fields that are mentioned
in the privacy policies. There are 20 unique information types
that the crowd workers annotated which are missed by the
authors. Also, there are 23 unique information types that are
annotated by authors that are missed by crowd workers. Simi-
larly, in the health domain, crowd workers and authors agreed
on 105 unique information types while annotating the policies.
Additionally, crowd workers identified 55 unique information
types while annotating the policies, while authors identified
34 unique information types that are not annotated by the
crowd workers. Comparing the lexicons, the information types
annotated by the authors are more fine grained, whereas
the information annotated by the crowd workers are more
abstract. Furthermore, crowd workers annotated some phrases
that cannot be entered by the users in UI input fields. For
example, crowd workers annotated “aggregated information”
which is not annotated by the authors. To include both crowd
workers and authors views, we decided to build the final
finance and health lexicons using both crowd workers and
authors annotations. In this case, if two or more annotators
(crowed workers or authors) agree on an annotation, we add
the phrase to the lexicon. Finally, we used the entity extractor
developed by Bhatia and Breaux to construct the lexicon with
unique information types from the annotated information types
[5].

Among 10 policies in finance domain, we constructed 52
HITs with an average word count of 102. These tasks produced
507 annotations including 198 authors annotations and 309
crowd workers annotations. The entity extractor yielded 112
unique information types. Finally, the authors and crowd
workers spent 13.05 hours to annotate the finance domain
HITs. Similarly, in the health domain, we constructed 141
HITs with an average word count of 105. These tasks produced
1,195 annotations including 456 authors annotations and 739
external annotations. The entity extractor yielded 197 unique
information types. Finally, the authors and crowd workers
spent 34.65 hours to annotate the health domain HITs. We
now discuss how we construct the finance and health ontology
using the related lexicons.

2) Constructing the UI-Privacy Policy Ontology: Privacy
policy authors tend to use semantic relations to communicate
their data practices with users. Among the semantic relations,
hypernymy is the most common relation used in privacy



Fig. 5: Approach Overview

Fig. 6: Example of Crowd Sourced Policy Annotation Task

polices where a more general concept is used to describe more
specific concepts. For example, the concept “personal infor-
mation” can be used to convey more specific concepts such
as: “credit card information,” “medications,” among others.
Therefore, it is important to identify the semantic relationships
between the information types in order to achieve a shared
meaning when comparing privacy policies with each other
or with application code. To address this issue, we created
two ontologies for both finance and health domain using the
approach described by Hosseini et al.[12]. The ontologies are
used as a reference for identifying the information types not
mentioned or mentioned using a more abstract concept in the
privacy polices, but collected through UI input fields.

Ontology is a collection of concepts names and relationships
between these concepts, including hypernymy, meronymy, and
synonymy[12]. Using Description Logic (DL) we define these
three relationships as the following axioms in the knowledge
base KB:

• AxiomI : C v D, (hypernymy), which means concept
C is a kind of concept D.

• AxiomII : C Part Of D, (meronymy), which means
concept C is a part of concept D.

• AxiomIII : C ≡ D, (synonymy), which means concept
C is equivalent to concept D.

Using our UI input field interpretations Û, we created a
mapping from all interpreted tags of an input field to the most
frequent tag U ∈ Û that represents an input field. Then, we
want to infer all policy concepts from policy lexicon P̂ {P |P ∈
P̂ ∧KB |= P v U ∨ KB |= P ≡ U}. Therefore, we can
identify the most frequent tag for each UI input field, then
infer the corresponding policy concepts from which at least
one concept should be present in the app’s privacy policy.

We constructed the ontologies using the manual method

introduced by Hosseini et al. [12]. First, we constructed a
flat ontology for finance and health lexicon separately, where
each phrase in each lexicon is subsumed by the > concept
and no other relationship between phrases exists. Then, for
each ontology we follow these steps: (a) we create two copies
of the flat ontology KB1 and KB2 for two analysts; (b)
two analysts individually conceptualize the phrases in the
flat ontology by comparing each phrase pair, and then we
create axioms between concepts from the set of three axioms
introduced above; (c) we compare the axioms created by
two analysts in KB1 and KB2 to identify missing axioms
and to compute agreement between two knowledge bases.
Agreement is measured using the chance-corrected inter-rater
reliability agreement statistic Fleiss’s Kappa ; (d) finally, two
analysts meet to investigate the disagreements and reconcile
the axioms in KB1 and KB2. We again calculate agreement
after each reconciliation to measure the improvement from
reconciliation.

In the finance domain, the resulting KB1 and KB2 contain
590 and 582 axioms, respectively. We obtained these results
after three rounds of comparisons and reconciliations. The first
comparison, yielded 292 differences and after the reconcilia-
tion, we were able to reduce the number of disagreements to
43 axioms. We used Fleiss’s Kappa to measure the degree of
agreement. In the second round of comparison, Kappa was
measured 0.83, and after the third round, Kappa increased to
0.92. In the health domain, the resulting KB1 and KB2 after
three rounds of reconciliations contain 951 and 920 axioms,
respectively. The first comparison yielded 491 differences and,
after the reconciliation, we reduced the number of disagree-
ments to 78 axioms. In the second round of comparison, Kappa
was 0.77, and after the third round, Kappa increased to 0.80.



B. Input Context Analysis

In this section, we introduce input context analysis which
extract user input viewsand their contextual GUI labels from
application code. As mentioned in Section III-A, we leverage
Gator to generate a statically estimated UI view hierarchy for
each android activity and dialog. However, GATOR has the
following 3 limitations that must be addressed to support our
application scenario.

First, GATOR does not differentiate input views from other
UI views, so we need to identify input views and link them
to the API method invocations receiving user input. Second,
although GATOR will properly collect and insert the text
views holding GUI labels in the generated view hierarchy,
it often cannot give the values of the GUI labels because
they are generated at runtime through string operations and
concatenations. So, we need to further track all the constant
strings that are combined to generate GUI labels. Third, as
shown in Section II, common dialogs are often used in the apps
for receiving user input. Such dialogs are analyzed as separate
units in GATOR, but we need to further insert the dialogs back
to their parent activities to acquire their context information.
We next introduce how we address these limitations.

1) Input View Extraction: The first step in our input context
analysis is to extract the input views, or more specifically,
the API method invocation that receives user input values
from an input view, such as <android.widget.EditText:
android.text.Editable getText()>. These invocations
then serve as the sources of the information flow analysis. We
carefully went through the API methods all subclasses of class
View in android framework, and identified 12 API methods
that receiving user inputs, and we list them in our anonymous
project site [2]. Note that it is possible that apps acquire
information implicitly through navigation events, especially
when the information is of enumerated type. For example,
while static button labels are not user input, a health app may
ask a user to click on either “Male” or “Female” button, and
provide different following user interfaces. In our research, we
focus on the user input views such as text boxes and check
boxes, and we plan to handle the latent user input in future
work.

After we collected the user-input-receiving API method
invocations, we need to further link them to the view objects
in the GUI hierarchy generated by GATOR. Specifically, we
insert code to the view object scanning component of GATOR,
so that the user-input-receiving API method invocations are
added to the view objects as attributes when a view object is
scanned by GATOR.

These user-input-receiving API methods are further put into
FlowDroid [3] as source APIs. By observing the user data
flow within the application from sources to sinks, we are
able to cognize whether the data has been collected from the
input-receiving API methods to sinks such as dataset sever,
internet or third party companies. We use the network sinks
in SuSi [20] in our analysis.

2) UI Label Analysis: The second step in our input context
analysis is to extract UI labels in the context of an user input

view. In this step, we apply the existing string analysis tech-
nique [7] to the arguments of all API method invocations that
set text to GUI views, such as <android.widget.Button:
void setText( java.lang.CharSequence)>. Then, we
break the value estimation of each argument to a set of strings,
so that they can be directly used in our following mapping
step. Similarly, we also need to link these set text method
invocations to GUI views in the view hierarchy, and we use
the same approach as mentioned in input view extraction
subsection.

3) Dialog Insertion: Finally, we need to insert the di-
alogs into their parent activities, and also identify their ti-
tles and GUI labels in the context of each parent. Specifi-
cally, we search for dialog-showing method invocations (e.g.,
<android.app.DialogFragment: void show(...)) in
the code and leveraging the points-to analysis results in
GATOR to find out the possible types of the dialog (e.g.,
GoalSetCheckingInReqDialog). Then, inside the dialog
declaration, we collect all the text setting method invocations
in the corresponding builder class, and outside the dialog
declaration, we collect all the text setting methods invoked
on the dialog object. All the collected texts are added to
the dialog object as its attributes, and the dialog itself will
be added as an attribute to the view whose event handlers
(as collected by GATOR) transitively calls the dialog-showing
method invocation.
<View type="...TextView" ... title="Set Check-In Requirements">
<View type="..." ... title="NO_TITLE">
...
<View type="..." idName="et_content" ... getValueOp="[
<android.widget.EditText: android.text.Editable getText()>

]" />
<View type="..." ... title="Steps"/>
...

</View>
</View>

An sample dialog insertion result of adapted GATOR is
shown above, where we omitted less-important details for
space restrictions. From the example, we can see that, the
dialog layout is inserted into the parent activity as a sub view
of the TextView with title “Set Check-In Requirements”.

C. Violation Detection

The primary function of a privacy policy is to inform the
user on private information that may be collected by the app.
For this reason, we consider violations as errors of omission
in that the policy failed to notify the user of the particular type
of data collection.

We adopt the classifications of violations from existing work
by Slavin et al.[24]. Specifically, violations are classified to
two major types: weak violations where the policy includes
vague or abstract terminology to cover the data leak and strong
violations occurring when the data type is completely omitted
from the policy. For example, if the app in question leaks a
user’s longitude, it would be considered a weak violation if
only the phrase “we collect location information. . . ” is present
in the policy. If no relevant language is included in the policy,
it would be considered a strong violation.



In Slavin et. al’s work [24], the mapping from API invo-
cations to policy phrases in the ontology is pre-constructed
manually. If an API method invocation can mapped to an
ontology phrase, but the phrase (or its synonyms in the
ontology) does not exist in the privacy policy, a violation is
detected. Furthermore, if some of the phrase’s hypernyms do
exist in the privacy policy, the violation is weak, while if none
of the phrase’s hypernyms exist in the policy, the violation is
strong.

1) Phrase Similarity: In our application scenario, as men-
tioned in TC1, a pre-constructed mapping is not possible. So
we consider two well-adopted similarity measurements to map
GUI labels to ontology phrases: WordNet similarity [16], and
Cosine similarity [23]. Since WordNet calculates similarity
only for word pairs, we extend it to map phrase pairs by
simple greedy alignment. Specifically, given phrases A and B,
we always align the word pairs (one in A and the other in B)
with highest similarity, perform the alignment recursively until
no more words in either A or B left. For Cosine similarity, we
convert the two phrase to two word vectors and apply standard
Cosine similarity formula on them.

In our approach, we consider a GUI label and a phrase are
mapped if their similarity is higher than a threshold, which is
a parameter of our approach, and we study the effectiveness
of our approach under different similarity thresholds in our
evaluation.

2) Violation Detection Strategy: Unlike API methods which
have explicit meanings, the meaning of user input views are
implicit and can be understood only from the context of the
view. The view id sometimes provide good information, but
often not. For example, in our motivation example, the view
id of the input box is “et content”, which does not have any
specific meaning (so that they can hardly be mapped to the
privacy ontology). Furthermore, since the concept used in the
user input is infinite, although we restrict our approach to two
domains, it is still not possible to exhaust all privacy-related
phrases and put them in the ontology. Therefore, if we use the
same approach as in Slavin et. al., and directly map the view
id / label of a user-input view to ontology phrases, we may
miss many violations.

To address this issue, we propose a novel violation detection
strategy that takes advantage of the context GUI labels, which
we referred to as Hierarchical Mapping (and we refer to
the original violation detection strategy as Node Mapping).
Our intuition is that, similar to ontologies, the GUI hierarchy
itself conveys information about hypernym relationships. For
example, an activity with title “Transaction Information” may
contain multiple user input boxes about transaction time,
source account, etc, which all are sub-concepts of transaction
information. Therefore, when mapping user input views to
ontology phrases, we use not only the id / label of the view
itself, but also its ancestor ids / labels in the view hierarchy.

In particular, as illustrated in Figure 7, we first collect the
labels and ids of all the ancestor views a given input view
(light blue views). Furthermore, we collect the labels and ids
of views that are sibling views immediate before any collected

Fig. 7: Illustration of Hierarchical Mapping

ancestor views (dark blue views), because such sibling views
often hold text labels of the input views. We refer to the
collected ids and labels ancestor labels. If an input view’s
id / label cannot be directly mapped to any ontology nodes,
we further map its ancestor labels to the ontology. Note that,
the extra mapping may increase the recall but also bring in
some noises, but our evaluation shows that the noises are less
significant compared with the gain in recall.

V. EVALUATION

A. Evaluation Setup

In our evaluation, we collected 100 applications from the
Google Play with privacy policies in two categories: finance
and health. To make our data set more representative, we
further consider two sub-categories in each category. For
finance apps, we consider personal-budgeting apps and bank
apps, and for health apps, we consider personal-health apps,
and medical apps. For each category, the former sub-category
is unregulated while the latter sub-category is regulated.
Specifically, for each sub-category, we searched the Google
Play market with the category name as the query word, and
downloaded the highest ranked 25 apps which have privacy
policies. For both finance and health categories, we choose the
5 apps with longest privacy policies from each sub-category
(in total 10 apps each category) to build our two domain
ontologies. We use the rest 80 apps as our evaluation subjects.

B. Ground Truth

One difficult part in our evaluation is to decide ground
truth of detected violations. Different users may have different
understanding of an input view, and the mapping from UI
labels to privacy policies can also be subjective. Finally,
the information flows reported by FlowDroid needs to be
validated with runtime observation of information leaks to the
network. To address these issues, for each violation detected
by any variant of our approach, we first use crowd sourcing
to elicit the generally acceptable interpretations of the user
input views. Then, we followed rigorous steps to map the
interpretation of crowd workers to the ontology phrases and
privacy polices. Finally, we validate the information flows
using Xposed framework. After these 3 steps, in total we
collected 20 strong violations and 10 weak violations from
8 apps of the evaluation set.



Fig. 8: User Interface Input Field Tagging Task

1) Eliciting UI Input Fields Interpretations: Inferring the
information types from the text field type in the application
code alone is a challenging task. We analyzed 37 input fields
names and found only 29.7% percent correctly describe the
field type. Therefore, in this section we describe the approach
we used to extract the information types associated with each
input field. We designed a free listing survey (defined in
Bernard et al.’s work [4]) that asks individuals to identify
the information type that describes the information entered
into the app through a specific UI input field shown in a
screenshot. Each survey consisted of 3-5 screenshots, and
Figure 8 presents an example screenshot. We surveyed 37
input fields from nine apps that collect information types
through UI input fields without mentioning in their privacy
policies. We recruited 30 participants per survey using Amazon
Mechanical Turk concluding 242 Human Intelligence Tasks
(HITs). Participants of the surveys were located in the United
States with HIT approval rate greater than 95%.

For each input field, we obtained 30 information types,
which we now call tags. Because there are multiple ways to
describe the same concept, we pre-processed the results to
more easily compare tags as follows: (a) rewrite prepositional
phrases into noun phrases, e.g. “amount of money” is rewritten
to “money amount;” (b) remove possessives, e.g., “user’s
current medication” is changed to “user current medication;”
(c) replacing “your” with “user”, e.g., “setting your own pace”
is changed to “setting user own pace;” (d) remove hyphens,
e.g., “e-mail” is changed to “email.” This step is similar in
purpose to porter stemming in natural language processing
[18], [19]. After pre-processing, we combine similar tags for
each field and calculate the tag frequency. Finally, each field
is represented by the most frequent tag that is also linked to a
tag set that contains the least frequent tags for that field. That
tag set can be used to expand the interpretation of information
types for the same input field, and also can be used to map the
UI input field to the privacy policy lexicon which is described

Fig. 9: Mapping

later in section V-B2.
2) Mapping: We need to further map elicited descriptive

phases to the ontology and the privacy policy. We follow the
three step approach: (1) for each elicited phrase, we look
for the exact match of the phrase in the ontology. If the
match is found, we map the phrase to the matched concept
in the ontology; (2) if we cannot find the exact match, (a) we
break the phrase into atomic tokens and create the superset
using the atomic tokens and combinations of them. We try
to find the exact match of the elements in the superset with
the concepts in the ontology. If we find an exact match, we
map the phrase to the matching concept in the ontology;
(b) in this step, we identify the purpose for the UI input
field phrase using the existing concepts in the ontology.
Then, we map the phrase to the concept that presents the
purpose of the phrase. (3) if we weren’t able to find related
concepts for the phrase using the previous steps, we use
the context of the screen where the input field is presented
in the application. The context provides us guides to find
related concepts to the phrase in the ontology. Figure 9 shows
the mapping for some phrases in UI input field lexicon.
For example, for phrase “bill due date”, we follow the two
step approach to map this phrase to some concepts in the
ontology. In step 1, we look for the exact match of “bill due
date” in the finance ontology and we fail to find the match.
Therefore, we try to find matching concepts using step 2.
First, we tokenize the phrase S = {bill, due, date}. Next,
we create the superset of S where T ⊃ S. Therefore, T =
{bill, due, date, billdue, billdate, duedate, billduedate}.
Comparing the elements of set T with the concepts in the
finance ontology, we are able to find a match for “date.”
Finally, we try to find a purpose for “bill due date” using the
concepts in finance ontology. We found “account information”
and “credit card information” as two concepts that can be
associated with “bill due date.” In another example, we were
not able to find the associated concepts to “cycle length”
using the two first steps. Therefore, using the context of the
screen that contains the UI input field and the application
itself, we were able to identify “cycle length” is related
to “menstrual information” and not “exercise information.”
Therefore, we mapped “cycle length” to “health information.”
Note that we have the authors but not crowd workers to
perform this mapping because it requires much expertise,



Fig. 10: Xposed Parameter Reporter Module

and a voting result is used for ground truth. For mapping the
elicited phrase to the privacy policy, we read the policies and
use our intuition to do the mapping because the policy is
free-style. Similarly we use the voting results among 5 of the
authors for ground truth.

3) Validation with Xposed: In order to verify the informa-
tion being passed to network sinks, we implemented runtime
tool to “hijack” the apps we tested as they ran on Android
and report the input parameters to the sinks involved in the
suspected leaks. To do so, we created a module that utilized
the Xposed framework. The approach is depicted in Figure 10.

Our verification module, the Parameter Reporter, searches
for the specific sinks used in the violations. For example, we
detected the org.apache.http.client.HttpGet()
sink to leak information in the cc.pacer.androidapp
app so the module was written to detect calls to that method
from that app.

The integration of the module with the app at run time
can be seen in the figure starting from the top right box. The
module is loaded by the Xposed framework at boot time and
thus is transferred into Zygote (which Xposed replaces). When
the app is started, the process is forked from Zygote and the
module persists within the app’s bytecode along with the hooks
included for detection of the sinks.

The custom code written in our module simply writes the
input parameters for the sinks to a log file. This allows us to
trigger the leak of data at runtime and verify that the UI input
values were leaked. For example, if we detected a leak from a
text input to HttpGet(), we can enter an easily-recognizable
string to that text input, “LEAKED DATA”, trigger the leak
at runtime, and check the log file to see if “LEAKED DATA”
was passed to HttpGet().

C. Violation Detection Results

After the ground truth violations are confirmed, we can
compare different variants of our approach on their effective-
ness. Since we have the similarity threshold as a parameter, we
also want to observe how the effectiveness change as similarity
threshold changes. We use the precision, recall and the F-score
as our metrics. Note that, since it is impossible to detect all
violations in the evaluation set, our recall is actually relative
recall, which uses the detected violations among all technique
variants as the whole set of violations.

In our experiment, we consider two similarity measure-
ments: WordNet and Cosine. We also consider two violation

detection strategies: node-mapping where only label / id of
the user input view is considered, and hierarchical-mapping
where all ancestor labels / ids are considered. So we have
four variants of our approach by combing the techniques:
Hier+WN, Hier+Cos, Node+WN, Node+Cos.

The violation detection results of our approach is presented
in Figure 11. In each sub-figure, we compare the four variants
on different similarity thresholds (0-1), with the legend on
the right top corner of the chart. The figures in Row 1
are comparing the precision, recall, and F-score on strong
violations, respectively. The figures in Row 2 are comparing
the precision, recall, and F-score on violations with strict
types, respectively. Here, by strict types, we mean a violation
is considered correctly detected only if the type is also correct
(strong violations detected as strong, and weak violations
detected as weak). The figures in Row 3 are comparing
the precision, recall, and F-score on violations with general
types, respectively. By general types, we mean a violation is
considered correctly detected even if the type is wrong (strong
violations detected as weak, and weak violations detected as
strong).

From the figure, we have the following observations. First,
hierarchical-mapping variants (solid lines) performs much
better (averagely 20 percentage points in recall, and 13 per-
centage points in F-score) than node-mapping variants in both
recall and F-score, while the precision of the two techniques
are similar. This observation confirms our intuition that the
incorporation of context GUI labels can greatly improve the
violation detection results (note that recall is more important
than precision in this scenario as long as the precision differ-
ence is not too large).

Second, as similarity threshold increases, the effectiveness
of WordNet-based variants climbs up, while the effectiveness
of Cosine-based variants drops. With the similarity threshold
around 0.8, all variants are close to their best performance (F-
score). The reason is that, WordNet often gives high similarity
scores to words that are not close related in the domain (but
may be closely related in other domains, such as bank and
river). So increasing similarity threshold helps remove noises.
By contrast, since Cosine similarity requires exact word match,
too high similarity threshold will result in losing matches
between GUI labels and ontology phrases.

Third, with 0.8 similarity threshold, our hierarchical-
mapping-based variants can achieve 60% F-score and 65%
recall for strong violations, 53% F-score and recall for strict
type violation detection, and 84% F-score and 86% recall for
general violation detection.

Fourth, as the similarity thresholds change, precision and
recall of a variant sometimes change in a similar way. The
reason is that, as the similarity threshold changes, there will
be more (or less) mappings between GUI labels and ontology
phrases. The additional mappings may help catch violations
when a privacy-related GUI label was not mapped to any
phrases, but may also hide violations when GUI labels are
mapped to more ontology phrases which may appear in the
privacy policies.
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Fig. 11: Comparison of Technique Variants under Different Similarity Thresholds

Examples. We hereby describe some real examples about
privacy violations. To avoid legal issues, we do not reveal the
name of any apps described. One example of strong violation
was found in one of the top pregnancy related health apps
with more than 50 million installs. We found that the app
send information about cycles and medicines taken to the
servers, but it does not mention anything about gathering such
information. By contrast, a weak violation was found in a top
personal budgeting app with more than 1 million installs. We
found that the app sends the bill due date information to the
server, but it is not directly mentioned in the privacy policy,
although transactions as a higher-level phrase is mentioned.

D. Threats to Validity

The major threats to our internal validity is the human mis-
takes and subjectiveness in our implementation of the approach
and the labeling of the ground truth. To reduce this threat,
we use existing frameworks (e.g., FlowDroid and GATOR) in
our implementation, and leverage crowd workers in labeling
to reduce subjectiveness. The major threats to the external
validity is that our findings may apply to only our evaluation
set or the two domains we are working on. To reduce this
threat, we collected top apps from different categories, and we
work on the two domains which are especially important for
privacy. We also plan to apply our approach to more domains
and apps.

VI. DISCUSSION

Our privacy policy ontology and violation detection tech-
niques are sufficiently general to work well with dynamic
analysis, such as monitoring. The static analysis results can
be leveraged to conduct a more efficient dynamic analysis

by leveraging the static analysis results to focusing on some
targeted methods. For example, if static analysis shows uti-
lization of the method foo() to access or transmit sensitive
data, the method described in Section V-B3 can be used
to detect invocations of foo() as well as any sensitive
parameters passed to it at runtime. This potentially allows for
communication to the end user of violations in real time.

Our approach can be utilized to generate privacy policy
statements from the mobile app source code. It will begin
with information flow descriptions which includes a set of UI-
related information flows. Then, the flow summarization and
flow prioritization techniques need to be developed to generate
policy statements, such as determining the appropriate level of
abstraction of concepts within the ontology to use. It would
be appropriate to generate actual privacy policy statements in
a controlled natural language that can be included in an apps
privacy policy.

The severity of a weak violation (i.e., the level of ab-
straction of the term in the policy) can be further refined
by applying semantic distance [25] to the represented term
and the mapped term. Currently, a violation where the policy
includes a hypernym for the mapped term, regardless of how
abstract it is, is categorized as weak leading to a large number
of weak violations. By quantifying the level of abstraction,
vague representations (e.g., those that do not contain strong
qualifying adjectives) could be identified as instances where
intentional obfuscation may be present. For example, if a
privacy policy states that the personal information provided
by end users is collected without presenting any specific type
of personal information, the bill due date collected by an app
code will be deemed as a stronger violation than the case



where its policy states that financial information is collected.
Similarly, if the label of the view, the title of the UI page, or
the instructions do not directly contain any ontology concept,
we can also categorize it as a stronger violation.

VII. RELATED WORK

Prior work exists on the exploration of information flow
graphs between different views, observation of hidden data
flows from given APIs sinks, and the detection of potential
privacy policy violations in Android app code. To our knowl-
edge, ours is the first approach that uses data flow analysis
to verify consistency between app-collected data and privacy
policy language with regard to native code and user input. The
following are related works in the area of Android data flow
analysis and privacy policies.

Slavin et al. used a similar approach to detect privacy policy
violations in Android apps based on Android API calls [24].
Such an approach is useful in identifying leaks where a
device’s sensors (e.g., GPS, Bluetooth, WiFi, etc) produce
sensitive information. The authors used a similar policy phrase
ontology as well as an API to phrase mapping for identifying
weak and strong violations. The major difference our approach
has is the ability to detect violations based on native code.
By mapping privacy-policy Phrases to user input views,
we are able to go beyond Android API-based detection and
identify potential violations involving user input. Furthermore,
the API-based approach relies on developer documentation
for the mapping whereas policies are not typically written
by developers. For our approach, privacy-policy Phrases are
mapped with a user-oriented perspective which is closer to
the language of privacy policies, which we assert is more
relevant since privacy policies are written with an intent to
be understood by end users.

Existing work on UI-related information explore various
facets of privacy and security. Huang et al. match text from UI
components to top-level functions in order to detect clandes-
tine behavior [15]. Their work targets functions by identifying
suspicious permissions. In contrast, our work compared the
consistency between privacy policies and user input via UI
components which are based on native code. This allows our
approach to not be limited by the coarse granularity of Android
permissions.

Huang et al. [15] modeled so-called “stealthy behaviors”
as program behavior that mismatches with user interface
by using static analysis. They extracted text from the user
interface component and match them with top-level functions.
Similarly, SUPOR [13] and UIPicker [17] identify sensitive
input views to which sensitive information can be entered.
These techniques are provide the means to identify critical data
entry points however, they lack the necessary NLP components
for relating such behavior to privacy policies.

Huang et al. developed BIDTEXT as a tool for reporting the
propagation of label set variables corresponding to sensitive
text labels to sinks [14]. BIDDTEXT is not able to solve our
problem because it does not try to map sensitive labels to
phrases in the privacy policies.

VIII. CONCLUSION

In this paper, we proposed a novel approach to detect
privacy policy violations due to leak of user input data.
To addressed the two technical challenges (infinite mapping
and various GUI implementation), we adapted the GATOR
framework, and developed hierarchical-mapping-based vio-
lation detection. We apply our approach on two important
domains (finance and health) and detected 20 strong violations
and 10 weak violations in 80 top apps from the domains. Our
experiment shows that our best technique variant can achieve
a F score of 84% with proper similarity threshold set.
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