
Extracting Information Types from Android Layout Code Using Sequence to
Sequence Learning

Mitra Bokaei Hosseini, Xue Qin, Xiaoyin Wang, and Jianwei Niu
University of Texas at San Antonio, San Antonio, TX, USA

{mitra.bokaeihosseini, xue.qin, xiaoyin.wang, jianwei.niu}@utsa.edu

Abstract

Mobile apps offer users with functionalities and services by
collecting information in various ways. Android app manifest
file and privacy policy are documents that provide users with
guidelines about what information type is being collected.
However, the information types mentioned in these files are
often abstract and do not include fine-grained details about
information collected through user input fields in apps. Ex-
isting approaches only focus on Android API method calls
which can reveal collected information types from a general
category of well-defined names. However, these approaches
are unable to identify the information types based on direct
user input as a major source of private information. These in-
formation types contain more sensitive data compared to API
retrieved information types. Moreover, developers can design
user input fields that refer to any kind of information which
can also vary among different apps. To address these prob-
lems, we propose to apply natural language processing tech-
niques to Android layout code to extract information types
associated with user input fields.

Introduction
Mobile apps are used widely in domains where users’ sensi-
tive information is involved. According to a latest report in
May 2017, 58.23% of mobile app users had downloaded a
health-related mobile app (Krebs and Duncan 2015), which
can collect information on body measurements, diet, exer-
cise, and medical treatment, among others. Similarly, in per-
sonal finance domain, 73% of Mint app users pay their finan-
cial balances using this app1. With increased access to per-
sonal information and the scale of mobile app deployment,
the need for tools to help developers to protect user pri-
vacy is increasingly important. Google encourages app de-
velopers to provide users with privacy policies that describe
how personal information is collected from users (Slavin
et al. 2016). These policies are written in natural language
and describe the data practices related to information types,
such as “location,” “friends’ contact information,” “financial
account information,” and “photos.” Such policies are also
meant to fulfill legal requirements to protect privacy, such as

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://blog.mint.com/credit/mint-by-the-numbers-which-
user-are-you-040616/

the General Data Protection Regulation (GDPR) in Europe,
or Federal Trade Commission (FTC) Act in the US. How-
ever, innovation and competition among mobile app devel-
opers challenges identifying the trace links between privacy
polices and app code.

Therefore, there is a need for automatic extraction of in-
formation types being collected through app code that can
be used to check the consistency between the code and the
data practices in privacy policies.

Prior work by Slavin et al. (Slavin et al. 2016) and Zim-
meck et al. (Zimmeck et al. 2017) attempt to identify infor-
mation types collected through API method calls with static
analysis. These API method calls concern personal informa-
tion that are automatically collected from the device, such
as sensor data. Wang et. al extract sensitive permissions re-
lated to only location and contact information types from
apps(Wang et al. 2017). Li et al. Provide a mapping between
Android permissions and user interface (UI) components by
analyzing the permission-related API method calls and UI
events(Li, Guo, and Chen 2016). These works are not fo-
cused on addressing personal information that users provide
directly through UI. Figure 1 shows an example where sen-
sitive information is provided to the app via the interface
and is thus disconnected from any API method call. These
user-based input fields are difficult to identify as they are
both context-sensitive and can vary in implementation from
developer to developer, so that they bring a new technical
challenge as follows.

TC: Vague and Unbounded Information Types for
User Input Data. The information types automatically col-
lected through platform API methods are constrained to An-
droid APIs which are described by comprehensive docu-
ments and information collected is well defined. These con-
straints limit the terminological space to only a few general
category names (e.g., location, voice, etc.) In contrast, de-
velopers can design novel UIs that ask users to provide po-
tentially any kind of information, which includes unstruc-
tured and semi-structured personal information in different
formats and language types.

To address this challenge, we propose an approach that
identifies the information types associated with user input
fields automatically. Our approach is based on the assump-
tion on the naturalness of Android XML layout code, so
that it is possible to directly apply natural language process-



Figure 1: User Interface Screenshots from Good Budget

ing techniques to the layout code and extract the informa-
tion types. Specifically, given a decompiled Android app,
first we extract the static layout files and construct a con-
text sequence for EditText Views by analyzing all the Views
preceding each EditText View in the graphic user interface
(GUI). Second, we establish a ground truth by asking sub-
jects to identify input fields’ information types in the GUI.
The context sequence generated for each EditText View is
then paired with human interpretations of the user input
field. These data are used to train a sequence to sequence
Long Short-Term Memory (LSTM) model. Finally, given a
context sequence from UI static layout, our trained model is
used to identify the information type.

This paper is organized as follows: First, we provide a
motivating example on user provided information through
input fields; second, we discuss our proposed approach for
automatic extraction of information types from static lay-
outs; and finally, we provide our proposed experiment setup.

Motivating Example
In this section, we provide a real example showing how GUI
views, especially user input views can be constructed from
layout file. In the Android framework, a layout defines the
visual structure of the GUI, such as locations for views, but-
tons, windows, and widgets.

1 <LinearLayout android:id=

2 "@id/trans_message_header">

3 <TextView android:id=

4 "@id/trans_message_text"/>

5 ...

6 <TextView android:id="@id/name_label"

7 android:text=

8 "@string/edit_envelope_envelope_name"/>

9 <TextView android:id="@id/amount_label"

10 android:text="@string/edit_envelope_budget"/>

11 ...

12 <EEBAAutoCompleteTextView

13 android:id="@id/name"/>

14 <EditText android:id="@id/amount"

15 android:hint="@string/amount_hint"/>

16 ...

17 <TextView android:id="@id/period_label"

18 android:text="@string/envelope_period_label"/>

19 <TextView android:id="@id/helper_text_amount"

20 android:text="0.00" />

21 ...

22 <Spinner android:id="@id/period"

23 android:prompt="@string/period_prompt"/>

24 <TextView android:id="@id/helper_text_period"

25 android:text="@string/period_text_monthly"/>

26 </LinearLayout>

27 <LinearLayout android:id="@id/extra_fields">

28 <TextView android:id="@id/due_date_label"

29 android:text="@string/due_date_label"/>

30 <LinearLayout>

31 <EditText android:id="@id/due_date" android:text=""/>

32 ...

33 <CheckBox android:id="@id/local_hidden"/>

34 <TextView android:text="@string/edit_envelope_hide"/>

35 ...

Listing 1: Partial Code from edit envelope.xml

Layouts. Layouts allow developers to pre-draw the GUIs
and reduce the overhead at runtime which can be extracted
by decompiling the app’s APK files.

Static layout files contain the structure of pre-drawn
GUIs, View IDs, and all the text labels we can see from
the GUIs. Listing 1 shows the partial code of edit
envelope.xml, which is the static layout file of Figure 1.

In listing 1, lines 6-8 refer to a TextView element that
corresponds to “Envelope Name” field label in Figure 1.
This element has two attributes: android:id for iden-
tification purposes; and android:text which contains
a reference to string.xml file including the actual text
user observes on the GUIs. Similarly, line 31 refers to a
EditTextView corresponding to “Due Date” field label in
Figure 1. This View also has two attributes: android:id
and android:text.

GUI Context. Just like natural language text, input views
can only be well understood with neighboring/ancestor
views. For the circled input field in figure 1 which relates
to line 31 in listing 1, without considering the context “en-
velope” only “due date” can be inferred as the information
type. If the privacy policy contains the collection of “bill
information” or “envelope information”, the automatic con-
sistency checkers fail to trace “due date” to “envelope in-
formation” without further context information. Therefore,
GUI context is essential in understanding user input infor-
mation types. We propose a learning model on GUI context
to infer the proper information type for user input fields.

Proposed Approach
We present the overview of our approach in figure 2 which
consists of two main steps: (1) given a mobile app de-
compiled code, the graphical user interface (GUI) analy-
sis extracts the layout XML code and constructs a con-
text sequence for each input field (EditText) which in-
cludes the id, text, and hint attributes of the EditText,
and the id, text, and hint attributes of all views preceding
the EditText in the layout XML file; (2) The sequence
to sequence learning component takes an input field context
sequence and maps it to a target sequence of words repre-



Figure 2: Identifying information type phrases from UI con-
text analysis

senting an information type phrase. The results from these
two steps are shown as artifacts in figure 2. The details for
each step are presented in the following sub-sections.

Input Context Analysis
In the GUI context analysis phase, we first decompile the
app’s APK files and extract all XML layout files2 associ-
ated with pre-drawn GUIs in the app. A layout file declares
the ViewGroups in the GUI. A View3 may have multiple
attributes, such as id and text. In our study, we only focus
on id, text, and hint attributes, since they are typically re-
lated to the semantics of a view. Android provides seven
types of input controls4 to help interact with app GUIs, in-
cluding button, checkbox, text fields, etc. We only focus on
EditText for user input analysis to identify the related infor-
mation types. To construct the context sequence for a target
EditText View, we analyze the XML file and gradually add
IDs, text, and hints related to all the Views preceding the tar-
get EditText View resulting in context sequence. Moreover,
strings will be transformed to their corresponding phrases in
string.xml when adding to context sequence.

The following example shows the context sequence ex-
tracted from listing 1 for EditText View in line 31 which
should be mapped to “envelope due date” through the learn-
ing process:

Context Sequence: {trans message header, trans message
text, name label, Envelope Name, amount label, Budget
Amount, name, amount, 0.00, period label, Budget Period,
helper text amount, period, Select a Budget Period, helper
text period, Monthly, extra fields, due date label, Due Date,
due date}

Next, we describe our model to infer information types
using the extracted sequences.

Sequence to Sequence Modeling
Recurrent Neural Networks (RNNs) (Rumelhart et al. 1988)
are natural generalization of feedforward neural networks
used for processing long sequential data(Rumelhart et al.
1988; Werbos 1990). RNNs connect computational units of
the network in a directed cycle such that at each time step

2https://developer.android.com/guide/topics/ui/declaring-
layout.html

3https://developer.android.com/guide/topics/ui/overview.html#Layout
4https://developer.android.com/guide/topics/ui/controls.html

i, a unit in the RNN takes both the input of the current step
(i.e., the wordi in the sequence), and the hidden state of the
same unit from the previous time step i-1 (Guo, Cheng, and
Cleland-Huang 2017). However, a standard RNN model can
map a source sequence to a target sequence whenever the
dimensionality of the source and target is known ahead of
time (Sutskever, Vinyals, and Le 2014). To solve this prob-
lem, Cho et al. proposed a model that uses two RNNs as
encoder and decoder which maps the source sequence to a
fixed size vector which is then mapped to a target sequence
(Cho et al. 2014). However, RNNs are known for losing long
term dependencies in a sequence (Bengio, Simard, and Fras-
coni 1994) and therefore, LSTM networks were introduced
to preserve long term dependencies through a memory cell
vector (Hochreiter and Schmidhuber 1997).

Information type phrases are comprised of sequence of
words with various lengths that are not known at the time.
To identify the information types from the GUI context se-
quences, we plan to use two LSTMs (Sutskever, Vinyals, and
Le 2014) to map a source to a target sequence. First, we en-
code the input sequence to a vector of fixed dimension that
includes the semantics of the input sequence using a multi-
layered LSTM. Next, we feed the input vector to another
LSTM which decodes the target sequence from the vector.
The target sequence cannot be identified using a classifi-
cation model since information types related to GUI input
fields are not bound to a finite set of well-defined phrases.

Figure 3 depicts the sequence to sequence learning model.
First, we present the source sequence as a vector of word
tokens (x1, x2, ..., xs), where xi corresponds to the ith
word in the source sequence. Next, each word is mapped
to its vector representation through Word Embedding layer
(Mikolov et al. 2013). We plan to learn the embedding
vectors from Wikipedia text. The goal of our model is to
estimate the conditional probability p(y1, ..., yt|x1, ..., xs),
where (y1, ..., yt) is the target sequence with length t which
differs from the source sequence length s. For this reason,
the embedded source vectors are sequentially fed into the
LSTM units which result in a single vector X representing
the semantics of the source sequence. Next, the model com-
putes the probability of (y1, ..., yt) with another LSTM net-
work whose initial hidden state is set to X which represents
the source sequence semantics:

p(y1, ..., yt|x1, ..., xs) =
∏t

i=1 p(yi|X, y1, ..., yi−1)
In this equation, p(yi|X, y1, ..., yi−1) predicts each word

in the target sequence using the previous predicted words
and the source sequence semantics. This prediction is
modeled using a softmax classifier. It is also necessary
that both source and target sequences end with a special
vector representation <EOS>, which enables the model
to define a distribution over sequences of various length
(Sutskever, Vinyals, and Le 2014). In the final stage, the
predicted (y1, ..., yt) is transformed to related word tokens
(w1, ..., wt) using the Word Embedding layer.

Proposed Experiment Setup
The ground truth (GT) for the proposed model contains
pairs of GUI context sequences and related information type



Figure 3: Mapping source sequence to target sequence using two LSTM networks

phrases which can be used to train the learning model. To
elicit the information types for GUI input fields, we designed
a free listing survey (Bernard 2011), in which crowd workers
were asked to identify the information type that describes the
input field shown in a red circle in the GUI screenshot (see
Figure 1). We surveyed 53 input fields from 19 apps. We re-
cruited 30 participants using Amazon Mechanical Turk. Par-
ticipants were located in the United States with an overall
HIT approval rating greater than 95%. We plan to improve
the GT by expanding this study and base our experiment on
the expanded GT.

Through the study, we obtained 30 information types per
input field. Since there are multiple ways to describe the
same concept, we pre-processed the results to more eas-
ily comparable elicited types(Porter 1980; 2001). After pre-
processing, we combined similar type names for each field
and calculate the type name frequency, which is the num-
ber of workers who provided each syntactically unique type
name per field. Finally, for each field, we select the most fre-
quent type name, which remains linked to a set containing
the less frequent type names for that field.

We understand that our current GT does not contain suf-
ficient amount of sequence pairs for training the learning
model. We are planning to publish a new study using the
method explained earlier in this section to acquire additional
training samples.

We also analyzed the 53 input fields and inferred infor-
mation types by concatenating the file name and input field
labels. The results was compared with the most frequent in-
put types provided by crowd workers showing 33.9% match.
This suggest that a naive approach with local context is not
effective.

References
Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning
long-term dependencies with gradient descent is difficult.
IEEE transactions on neural networks 5(2):157–166.
Bernard, H. R. 2011. Research methods in anthropol-
ogy: Qualitative and quantitative approaches. Rowman Al-
tamira.
Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078.

Guo, J.; Cheng, J.; and Cleland-Huang, J. 2017. Seman-
tically enhanced software traceability using deep learning
techniques. In ICSE, 3–14. IEEE Press.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Krebs, P., and Duncan, T. D. 2015. Health app use among
us mobile phone owners: A national survey. JMIR mHealth
uHealth 3(4):e101.
Li, Y.; Guo, Y.; and Chen, X. 2016. Peruim: Understanding
mobile application privacy with permission-ui mapping. In
ubicomp, 682–693. ACM.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Porter, M. F. 1980. An algorithm for suffix stripping. Pro-
gram 14(3):130–137.
Porter, M. F. 2001. Snowball: A language for stemming
algorithms.
Rumelhart, D. E.; Hinton, G. E.; Williams, R. J.; et al. 1988.
Learning representations by back-propagating errors. Cog-
nitive modeling 5(3):1.
Slavin, R.; Wang, X.; Hosseini, M. B.; Hester, J.; Krishnan,
R.; Bhatia, J.; Breaux, T. D.; and Niu, J. 2016. Toward a
framework for detecting privacy policy violations in android
application code. In ICSE, ICSE ’16, 25–36. New York, NY,
USA: ACM.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Wang, H.; Li, Y.; Guo, Y.; Agarwal, Y.; and Hong, J. I.
2017. Understanding the purpose of permission use in mo-
bile apps. ACM Transactions on Information Systems (TOIS)
35(4):43.
Werbos, P. J. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the IEEE
78(10):1550–1560.
Zimmeck, S.; Wang, Z.; Zou, L.; Iyengar, R.; Liu, B.;
Schaub, F.; Wilson, S.; Sadeh, N.; Bellovin, S. M.; and Rei-
denberg, J. 2017. Automated analysis of privacy require-
ments for mobile apps. In NDSS.


