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Abstract

Currently, the amount of sensitive data produced by many organizations is outpacing their storage ability.

The management of such huge amount of data is quite expensive due to the requirements of high storage

capacity and qualified personnel. Storage-as-a-Service (SaaS) offered by cloud service providers (CSPs) is

a paid facility that enables organizations to outsource their data to be stored on remote servers. Thus, SaaS

reduces the maintenance cost and mitigates the burden of large local data storage at the organization’s end.

A data owner pays for a desired level of security and must get some compensation in case of any misbehavior

committed by the CSP. On the other hand, the CSP needs a protection from any false accusation that may be

claimed by the owner to get illegal compensations.

In this paper, we propose a cloud-based storage scheme that allows the data owner to benefit from the

facilities offered by the CSP and enables indirect mutual trust between them. The proposed scheme has four

important features: (i) it allows the owner to outsource sensitive data to a CSP, and perform full block-level

dynamic operations on the outsourced data, i.e., block modification, insertion, deletion, and append, (ii) it

ensures that authorized users (i.e., those who have the right to access the owner’s file) receive the latest version

of the outsourced data, (iii) it enables indirect mutual trust between the owner and the CSP, and (iv) it allows

the owner to grant or revoke access to the outsourced data. We discuss the security issues of the proposed

scheme. Besides, we justify its performance through theoretical analysis and a prototype implementation on

Amazon cloud platform to evaluate storage, communication, and computation overheads.
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1 INTRODUCTION

Cloud computing has received considerable attention from both academia and industry due to a number

of important advantages including: cost effectiveness, low management overhead, immediate access to

a wide range of applications, flexibility to scale up and down information technology (IT) capacity, and

mobility where customers can access information wherever they are, rather than having to remain at their

desks. Cloud computing is a distributed computational model over a large pool of shared-virtualized
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computing resources (e.g., storage, processing power, memory, applications, services, and network band-

width). Cloud service providers (CSPs) offer different classes of services (Storage-as-a-Service (SaaS),

Application-as-a-Service, and Platform-as-a-Service) that allow organizations to concentrate on their core

business and leave the IT operations to experts.

In the current era of digital world, different organizations produce a large amount of sensitive data

including personal information, electronic health records, and financial data. The amount of digital data

increases at a staggering rate; doubling almost every year and a half [1]. This data needs to be widely

distributed and stored for a long time due to operational purposes and regulatory compliance. The local

management of such huge amount of data is problematic and costly. While there is an observable drop

in the cost of storage hardware, the management of storage has become more complex and represents

approximately 75% of the total ownership cost [1]. SaaS offered by CSPs is an emerging solution to

mitigate the burden of large local data storage and reduce the maintenance cost via the concept of

outsourcing data storage.

Through outsourcing data storage scenario, data owners delegate the storage and management of their

data to a CSP in exchange for pre-specified fees metered in GB/month. Such outsourcing of data storage

enables owners to store more data on remote servers than on private computer systems. Moreover, the

CSP often provides better disaster recovery by replicating the data on multiple servers across multiple

data centers achieving a higher level of availability. Thus, many authorized users are allowed to access

the remotely stored data from different geographic locations making it more convenient for them.

Since the owner physically releases sensitive data to a remote CSP, there are some concerns regarding

confidentiality, integrity, and access control of the data. In some practical applications, data confidentiality is

not only a privacy concern, but also a juristic issue. For example, in e-Health applications inside the USA

the usage and exposure of protected health information should meet the policies admitted by Health

Insurance Portability and Accountability Act (HIPAA) [2], and thus keeping the data private on the

remote storage servers is not just an option, but a demand. The confidentiality feature can be guaranteed

by the owner via encrypting the data before outsourcing to remote servers.

For verifying data integrity over cloud servers, researchers have proposed provable data possession

(PDP) technique to validate the intactness of data stored on remote sites. A number of PDP protocols

have been presented to efficiently validate the integrity of static data, e.g., [3]–[10]. Another class of PDP

schemes was concerned with the dynamic behavior of data over remote servers [11]–[15]. This class allows

the owner to outsource a data file and perform updating or scaling operations on the outsourced data.

Later, a verifier validates that the remote servers keep the data intact and compatible with the dynamic

requests issued by the owner. A complementary line of research on PDP has focused on multiple data

copies stored over different servers [16]–[19]. Proof of retrievability (POR) [20]–[25] was introduced as a

stronger technique than PDP in the sense that the entire data file can be reconstructed from portions of

the data that are reliably stored on the servers.
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Commonly, traditional access control techniques assume the existence of the data owner and the storage

servers in the same trust domain. This assumption, however, no longer holds when the data is outsourced

to a remote CSP, which takes the full charge of the outsourced data management, and resides outside the

trust domain of the data owner. A feasible solution can be presented to enable the owner to enforce access

control of the data stored on a remote untrusted CSP. Through this solution, the data is encrypted under

a certain key, which is shared only with the authorized users. The unauthorized users, including the CSP,

are unable to access the data since they do not have the decryption key. This general solution has been

widely incorporated into existing schemes [26]–[29], which aim at providing data storage security on

untrusted remote servers. Another class of solutions utilizes attribute-based encryption (ABE) to achieve

fine-grained access control. ABE [30]1 is a public key cryptosystem for one-to-many communications

that enables fine-grained sharing of encrypted data. The ABE associates the ciphertext with a set of

attributes, and the private key with an access structure (policy). The ciphertext is decrypted if and only

if the associated attributes satisfy the access structure of the private key. Access revocation in ABE-based

systems is an issue since each attribute is conceivably shared by many users. Examples of ABE-based

systems for achieving access control of remotely stored data are [32]–[34].

Different approaches have been investigated that encourage the owner to outsource the data, and

offer some sort of guarantee related to the confidentiality, integrity, and access control of the outsourced

data. These approaches can prevent and detect (with high probability) malicious actions from the CSP

side. On the other hand, the CSP needs to be safeguarded from a dishonest owner, who attempts to get

illegal compensations by falsely claiming data corruption over cloud servers. This concern, if not properly

handled, can cause the CSP to go out of business [35].

In this work, we propose a scheme that addresses some important issues related to outsourcing the

storage of data, namely dynamic data, newness, mutual trust, and access control. One of the core design

principles of data outsourcing is to provide dynamic scalability of data for various applications. This

means that the remotely stored data can be not only accessed by authorized users, but also updated

and scaled by the owner. After updating, the authorized users should receive the latest version of the

data (newness property), i.e., a technique is required to detect whether the received data is stale. This

issue is crucial for applications in which critical decisions are taken based on the received data. For

example, in e-Health applications a physician may write a prescription based on a patient’s medical

history received from remote servers. If such medical data is not up-to-date, the given prescription may

conflict with the patient’s current circumstances causing severe health problems. Mutual trust between

the data owner and the CSP is another imperative issue, which is addressed in the proposed scheme. A

mechanism is introduced to determine the dishonest party, i.e., misbehavior from any side is detected

1. The construction presented in [30] is called key-policy ABE (KP-ABE), which contrasts with another construction called

ciphertext-policy ABE (CP-ABE) [31]. In the CP-ABE, an access structure is associated with the ciphertext, and a set of attributes

is associated with the private key.
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and the responsible party is identified. Last but not least, the access control is considered, which allows

the data owner to grant or revoke access rights to the outsourced data.

Main contributions. Our contributions can be summarized in two main points.

1) The design and implementation of a cloud-based storage scheme that has the following features:

• It allows a data owner to outsource the data to a remote CSP, and perform full dynamic

operations at the block-level, i.e., it supports operations such as block modification, insertion,

deletion, and append

• It ensures the newness property, i.e., the authorized users receive the most recent version of the

data

• It establishes indirect mutual trust between the data owner and the CSP since each party resides

in a different trust domain

• It enforces the access control for the outsourced data

2) We discuss the security features of the proposed scheme. Besides, we justify its performance through

theoretical analysis and a prototype implementation on Amazon cloud platform to evaluate storage,

communication, and computation overheads.

Paper organization. The remainder of the paper is organized as follow. Section 2 contains related work.

Our system and assumptions are presented in Section 3. Section 4 reviews some techniques pertaining

to our construction. The proposed scheme is elaborated in Section 5. The security analysis is given in

Section 6. The performance analysis is shown in Section 7. Section 8 presents the implementation and

experimental results. Concluding remarks are given in Section 9.

2 RELATED WORK

Existing research close to our work can be found in the areas of integrity verification of outsourced data,

cryptographic file systems in distributed networks, and access control of outsourced data.

Different variations of PDP protocols have been presented for static or warehoused data; for example,

see [3]–[10]. Some other PDP schemes consider the case of dynamic data that are usually more prevailing

in practical applications. Examples of PDP schemes that deal with dynamic data are [11]–[15]. While the

schemes [3]–[15] are for a single copy of a data file, PDP schemes have been presented for multiple copies

of static data, e.g., [16]–[18]. Reference [19] addresses a PDP construction for multiple copies of dynamic

data. Proof of retrievability (POR) is a complementary approach to PDP, and is stronger than PDP in the

sense that the entire data file can be reconstructed from portions of the data that are reliably stored on

the servers. This is due to encoding of the data file, for example using erasure codes, before outsourcing

to remote servers. References [20]–[25] are examples of POR schemes that can be found in the literature.

Kallahalla et al. [26] designed a cryptography-based file system called Plutus for secure sharing of

data on untrusted servers. Some authorized users of the data have the privilege to read and write, while
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others can only read the data. In Plutus, a file-group represents a set of files with similar attributes, and

each file-group is associated with a symmetric key called file-lockbox key. A data file is fragmented into

blocks, where each block is encrypted with a unique symmetric key called a file-block key. The file-block

key is further encrypted with the file-lockbox key of the file-group to which the data file belongs. If the

data owner wants to share a file-group with a set of users, the file-lockbox key is just distributed to

them. Plutus supports two operations on the file blocks: read and write/modify. Delete operation can be

supported by overwriting an existing block with null.

Goh et al. [27] have presented SiRiUS, which is designed to be layered over existing file systems such

as NFS (network file system) to provide end-to-end security. To enforce access control in SiRiUS, each

data file (d-file) is attached with a metadata file (md-file) that contains an encrypted key block for each

authorized user with some access rights (read or write). More specifically, the md-file represents the

d-file’s access control list (ACL). The d-file is encrypted using a file encryption key (FEK), and each

entry in the ACL contains an encrypted version of the FEK under the public key of one authorized user.

For large-scale sharing, the authors in [27] presented SiRiUS-NNL that uses NNL (Naor-Naor-Lotspiech)

broadcast encryption algorithm [36] to encrypt the FEK of each file instead of encrypting using each

authorized user’s public key. SiRiUS supports two operations on the file blocks: read and write/modify.

Based on proxy re-encryption [37], Ateniese et al. [28] have introduced a secure distributed storage

protocol. In their protocol, a data owner encrypts the blocks with symmetric data keys, which are

encrypted using a master public key. The owner keeps a master private key to decrypt the symmetric

data keys. Using the master private key and the authorized user’s public key, the owner generates proxy

re-encryption keys. A semi-trusted server then uses the proxy re-encryption keys to translate a ciphertext

into a form that can be decrypted only by granted users, and thus enforces access control for the data.

Vimercati et al. [29] have constructed a scheme for securing data on semi-trusted storage servers based

on key derivation methods of [38]. In their scheme, a secret key is assigned to each authorized user, and

data blocks are grouped based on users that can access these blocks. One key is used to encrypt all blocks

in the same group. Moreover, the data owner generates public tokens to be used along with the user’s

secret key to derive decryption keys of specific blocks. The blocks and the tokens are sent to remote

servers, which are not able to drive the decryption key of any block using just the public tokens. The

approach in [29] allows the servers to conduct a second level of encryption (over-encryption) to enforce

access control of the data. Repeated access grant and revocation may lead to a complicated hierarchy

structure for key management [39].

The concept of over-encryption to enforce access control has also been used by Wang et al. [39]. In

their scheme, the owner encrypts the data block-by-block, and constructs a binary tree of the block keys.

The binary tree enables the owner to reduce the number of keys given to each user, where different

keys in the tree can be generated from one common parent node. The remote storage server performs

over-encryption to prevent revoked users from getting access to updated data blocks.
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Popa et al. [35] have introduced a cryptographic cloud storage system called CloudProof that provides

read and write data sharing. CloudProof has been designed to offer security guarantees in the service level

agreements of cloud storage systems. It divides the security properties in four categories: confidentiality,

integrity, read freshness, and write-serializability. CloudProof can provide these security properties using

attestations (signed messages) and chain hash. Besides, it can detect and prove to a third party that

any of these properties have been violated. Read freshness and write-serializability in CloudProof are

guaranteed by periodic auditing in a centralized manner. The time is divided into epochs, which are time

periods at the end of each the data owner performs the auditing process. The authorized users send the

attestations – they receive from the CSP during the epoch – to the owner for auditing. Like Plutus and

SiRiUS, CloudProof supports two operations on the file blocks: read and write/modify.

Discussion. Some aspects related to outsourcing data storage are beyond the setting of both PDP and

POR, e.g., enforcing access control, and ensuring the newness of data delivered to authorized users.

Even in the case of dynamic PDP, a verifier can validate the correctness of data, but the server is still

able to cheat and return stale data to authorized users after the auditing process is done. The schemes

[26]–[29] have focused on access control and secure sharing of data on untrusted servers. The issues

of full block-level dynamic operations (modify, insert, delete, and append), and achieving mutual trust

between the data owners and the remote servers are outside their scope. Although [39] have presented an

efficient access control technique and handled full dynamic operations for the data over remote servers,

data integrity, newness property, and mutual trust are not addressed. Authorized users in CloudProof

[35] are not performing immediate checking for freshness of received data; the attestations are sent at

the end of each epoch to the owner for completing the auditing task. Instantaneous validation of data

freshness is crucial before taking any decisions based on the received data from the cloud. CloudProof

guarantees write-serializability, which is outside the scope of our current work as we are focusing on

owner-write-users-read applications.

3 OUR SYSTEM AND ASSUMPTIONS

System components and relations. The cloud computing storage model considered in this work consists

of four main components as illustrated in Fig. 1: (i) a data owner that can be an organization generating

sensitive data to be stored in the cloud and made available for controlled external use; (ii) a CSP who

manages cloud servers and provides paid storage space on its infrastructure to store the owner’s files

and make them available for authorized users; (iii) authorized users – a set of owner’s clients who have

the right to access the remote data; and (iv) a trusted third party (TTP), an entity who is trusted by all

other system components, and has expertise and capabilities to detect and specify dishonest parties.

In Fig. 1, the relations between different system components are represented by double-sided arrows,

where solid and dashed arrows represent trust and distrust relations, respectively. For example, the data
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Fig. 1: Cloud computing data storage system model.

owner, the authorized users, and the CSP trust the TTP. On the other hand, the data owner and the

authorized users have mutual distrust relations with the CSP. Thus, the TTP is used to enable indirect

mutual trust between these three components. There is a direct trust relation between the data owner

and the authorized users.

The storage model used in this work can be adopted by many practical applications. For example,

e-Health applications can be envisioned by this model, where the patients’ database that contains large

and sensitive information can be stored on cloud servers. In these types of applications, a medical center

can be considered as the data owner, physicians as the authorized users who have the right to access

the patients’ medical history, and an independent-trusted organization as the TTP. Many other practical

applications like financial, scientific, and educational applications can be viewed in similar settings.

Remark 1. The idea of using a third party auditor has been used before in outsourcing data storage

systems, especially for customers with constrained computing resources and capabilities, e.g., [8], [9],

[13], [40]. The main focus of a third party auditor is to verify the data stored on remote servers, and

give incentives to providers for improving their services. The proposed scheme in this work uses the

TTP in a slightly different fashion. The auditing process of the data received from the CSP is done by

the authorized users, and we resort to the TTP only to resolve disputes that may arise regarding data

integrity or newness. Reducing the storage overhead on the CSP side is economically a key feature to

lower the fees paid by the customers. Moreover, decreasing the overall computation cost in the system is

another crucial aspect. To achieve these goals, a small part of the owner’s work is delegated to the TTP.

Outsourcing, updating, and accessing. The data owner has a file F consisting of m blocks to be

outsourced to a CSP, where storage fees are pre-specified according to the used storage space. For

confidentiality, the owner encrypts the data before sending to cloud servers. After data outsourcing,

the owner can interact with the CSP to perform block-level operations on the file. These operations
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includes modify, insert, append, and delete specific blocks. In addition, the owner enforces access control

by granting or revoking access rights to the outsourced data.

An authorized user sends a data-access request to the CSP, and receives the data file in an encrypted

form that can be decrypted using a secret key generated by the authorized user (more details will

be explained later). We assume that the interaction between the owner and the authorized users to

authenticate their identities has already been completed, and it is not considered in this work. Moreover,

all authorized users have the same privileges, i.e., the issue of access hierarchy is outside the current

scope.

The TTP is an independent entity, and thus has no incentive to collude with any party in the system.

However, any possible leakage of data towards the TTP must be prevented to keep the outsourced data

private. The TTP and the CSP are always online, while the owner is intermittently online. The authorized

users are able to access the data file from the CSP even when the owner is offline. Throughout this paper,

the terms cloud server and cloud service provider are used interchangeably.

Threat model. The CSP is untrusted, and thus the confidentiality and integrity of data in the cloud may

be at risk. For economic incentives and maintaining a reputation, the CSP may hide data loss (due to

hardware failure, management errors, various attacks), or reclaim storage by discarding data that has

not been or is rarely accessed. To save the computational resources, the CSP may totally ignore the data-

update requests issued by the owner, or execute just a few of them. Hence, the CSP may return damaged

or stale data for any access request from the authorized users. Furthermore, the CSP may not honor the

access rights created by the owner, and permit unauthorized access for misuse of confidential data.

On the other hand, a data owner and authorized users may collude and falsely accuse the CSP to get

a certain amount of reimbursement. They may dishonestly claim that data integrity over cloud servers

has been violated, or the CSP has returned a stale file that does not match the most recent modifications

issued by the owner.

Security requirements. Confidentiality: outsourced data must be protected from the TTP, the CSP, and

users that are not granted access. Integrity: outsourced data is required to remain intact on cloud servers.

The data owner and authorized users must be enabled to recognize data corruption over the CSP side.

Newness: receiving the most recent version of the outsourced data file is an imperative requirement of

cloud-based storage systems. There must be a detection mechanism if the CSP ignores any data-update

requests issued by the owner. Access control: only authorized users are allowed to access the outsourced

data. Revoked users can read unmodified data, however, they must not be able to read updated/new

blocks. CSP’s defence: the CSP must be safeguarded against false accusations that may be claimed by

dishonest owner/users, and such a malicious behavior is required to be revealed.

Combining the confidentiality, integrity, newness, access control, and CSP’s defence properties in the

proposed scheme enables the mutual trust between the data owner and the CSP. Thus, the owner can
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benefit from the wide range of facilities offered by the CSP, and at the same time, the CSP can mitigate

the concern of cheating customers.

4 SYSTEM PRELIMINARIES

4.1 Lazy Revocation

The proposed scheme in this work allows the data owner to revoke the right of some users for accessing

the outsourced data. In lazy revocation, it is acceptable for revoked users to read (decrypt) unmodified

data blocks. However, updated or new blocks must not be accessed by such revoked users. The notation

of lazy revocation was first introduced in [41]. The idea is that allowing revoked users to read unchanged

data blocks is not a significant loss in security. This is equivalent to accessing the blocks from cashed

copies. Updated or new blocks following a revocation are encrypted under new keys. Lazy revocation

trades re-encryption and data access cost for a degree of security. However, it causes fragmentation of

encryption keys, i.e., data blocks could have more than one key. Lazy revocation has been incorporated

into many cryptographic systems [35], [39], [42], [43].

4.2 Key Rotation

Key rotation [26] is a technique in which a sequence of keys can be generated from an initial key and a

master secret key. The sequence of keys has two main properties: (i) only the owner of the master secret

key is able to generate the next key in the sequence from the current key, and (ii) any authorized user

knowing a key in the sequence is able to generate all previous versions of that key. In other words, given

the i-th key Ki in the sequence, it is computationally infeasible to compute keys {Kl} for l > i without

having the master secret key, but it is easy to compute keys {Kj} for j < i.

The first property enables the data owner to revoke access to the data by producing new keys in the

sequence, which are used to encrypt updated/new blocks following a revocation (lazy revocation). It is

intended to prevent a user revoked during the i-th time from getting access to data blocks encrypted

during the l-th time for l > i.

The second property allows authorized users to maintain access to blocks that are encrypted under

older versions of the current key. It enables the data owner to transfer only a single key Ki to authorized

users for accessing all data blocks that are encrypted under keys {Kj}j≤i (rather than transferring a

potentially large set of keys {K1,K2, . . . ,Ki}). Thus, the second property reduces the communication

overhead on the owner side.

The proposed scheme in this work utilizes the key rotation technique [26]. Let N = pq denote the RSA

modulus (p& q are prime numbers), a public key = (N, e), and a master secret key d. The key d is known

only to the data owner, and ed ≡ 1 mod (p− 1)(q − 1).

Whenever a user’s access is revoked, the data owner generates a new key in the sequence (rotating

forward). Let ctr indicate the index/version number of the current key in the keys sequence. The owner
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generates the next key by exponentiating Kctr with the master secret key d: Kctr+1 = Kd
ctr mod N .

Authorized users can recursively generate older versions of the current key by exponentiating with

the public key component e: Kctr−1 = Ke
ctr mod N (rotating backward). The RSA encryption is used as a

pseudorandom number generator; it is unlikely that repeated encryption results in cycling, for otherwise,

it can be used to factor the RSA modulus N [44].

4.3 Broadcast Encryption

Broadcast encryption (bENC) [45], [46] allows a broadcaster to encrypt a message for an arbitrary subset

of a group of users. The users in the subset are only allowed to decrypt the message. However, even

if all users outside the subset collude they cannot access the encrypted message. Such systems have

the collusion resistance property, and are used in many practical applications including TV subscription

services and DVD content protection. The proposed scheme in this work uses bENC [45] to enforce

access control in outsourced data. The bENC [45] is composed of three algorithms: SETUP, ENCRYPT, and

DECRYPT.

SETUP. This algorithm takes as input the number of system users n. It defines a bilinear group G of

prime order p with a generator g, a cyclic multiplicative group GT , and a bilinear map ê : G×G→ GT ,

which has the properties of bilinearity, computability, and non-degeneracy [47]. The algorithm picks a

random α ∈ Zp, computes gi = g(α
i) ∈ G for i = 1, 2, . . . , n, n+2, . . . , 2n, and sets v = gγ ∈ G for γ ∈R Zp.

The outputs are a public key PK = (g, g1, . . . , gn, gn+2, . . . , g2n, v) ∈ G2n+1, and n private keys {di}1≤i≤n,

where di = gγi ∈ G.

ENCRYPT. This algorithm takes as input a subset S ⊆ {1, 2, . . . , n}, and a public key PK. It outputs a

pair (Hdr, K), where Hdr is called the header (broadcast ciphertext), and K is a message encryption key.

Hdr = (C0, C1) ∈ G2, where for t ∈R Zp, C0 = gt and C1 = (v ·
∏
j∈S

gn+1−j)
t. The key K = ê(gn+1, g)t is

used to encrypt a message M (symmetric encryption) to be broadcast to the subset S.

DECRYPT. This algorithm takes as input a subset S ⊆ {1, 2, . . . , n}, a user-ID i ∈ {1, 2, . . . , n}, the private

key di for user i, the header Hdr = (C0, C1), and the public key PK. If i ∈ S, the algorithm outputs the

key K = ê(gi, C1)/ê(di ·
∏
j∈S
j 6=i

gn+1−j+i, C0), which can be used to decrypt the encrypted version of M .

In the above construction of the bENC [45], a private key contains only one element of G, and the

broadcast ciphertext (Hdr) consists of two elements of G. On the other hand, the public key PK is

comprised of 2n+ 1 elements of G. A second construction, which is a generalization of the first one was

presented in [45] to trade the PK size for the Hdr size. The main idea is to run multiple parallel instances

of the first construction, where each instance can broadcast to at most B users. Setting B = b
√
nc results

in a system with O(
√
n) elements of G for each of PK and Hdr. The private key is still just one element.

In this work, we utilize the second construction to achieve a balance between the sizes of PK and Hdr.

For an organization (data owner) with 105 users, each of PK and Hdr contains only 317 elements of G.
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5 PROPOSED CLOUD-BASED STORAGE SCHEME

5.1 Warmup Discussion

Before presenting our main scheme, we discuss a straightforward solution. Once the data has been

outsourced to a remote CSP, which may not be trustworthy, the owner loses the direct control over the

sensitive data. This lack of control raises the data owner’s concerns about the integrity of data stored in

the cloud. Conversely, a dishonest owner may falsely claim that the data stored in the cloud is corrupted

to get some compensation. This mutual distrust between the data owner and the CSP, if not properly

handled, may hinder the successful deployment of cloud architecture.

A straightforward solution to detect cheating from any side is through using authentication tags

(digital signatures). For a file F = {bj}1≤j≤m, the owner attaches a tag OWNσj with each block before

outsourcing. The tags are generated per block not per file to enable dynamic operations at the block

level without retrieving the whole outsourced file. The owner sends {bj ,OWNσj}1≤j≤m to the CSP, where

the tags {OWNσj}1≤j≤m are first verified. In case of failed verification, the CSP rejects to store the

data blocks and asks the owner to re-send the correct tags. If the tags are valid, both the blocks and

the tags are stored on the cloud servers. The tags {OWNσj}1≤j≤m achieve non-repudiation from the

owner side. When an authorized user (or the owner) requests to retrieve the data file, the CSP sends

{bj ,OWNσj ,CSPσj}1≤j≤m, where CSPσj is the CSP’s signature/tag on bj ||OWNσj . The authorized user first

verifies the tags {CSPσj}1≤j≤m. In case of failed verification, the user asks the CSP to re-perform the

transmission process. If {CSPσj}1≤j≤m are valid tags, the user then verifies the owner’s tag OWNσj on the

block bj ∀ j. If any tag OWNσj is not verified, this indicates the corruption of data over the cloud servers.

The CSP cannot repudiate such corruption for the owner’s tags {OWNσj}1≤j≤m are previously verified

and stored by the CSP along with the data blocks. Since the CSP’s signatures {CSPσj}1≤j≤m are attached

with the received data, a dishonest owner cannot falsely accuse the CSP regarding data integrity.

Although the previous straightforward solution can detect cheating from either side, it cannot guarantee

the newness property of the outsourced data; the CSP can replace the new blocks and tags with old

versions without being detected (replay attack). The above solution increases the storage overhead –

especially for large files in order of gigabytes – on the cloud servers as each outsourced block is attached

with a tag. Moreover, there is an increased computation overhead on different system components; the

data owner generates a signature for each block, the CSP performs a signature verification for each

outsourced block, and the authorized user (or the owner) verifies two signatures for each received block

from the cloud servers. Thus, for a file F containing m blocks, the straightforward solution requires

2m signature generations and 3m signature verifications, which may be computationally a challenging

task for large data files. For example, if the outsourced file is of size 1GB with 4KB block size, the

straightforward solution requires 219 signature generations and 3× 218 signature verifications.

If the CSP receives the data blocks from a trusted entity (other than the owner), the block tags and
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the signature operations are not needed since the trusted entity has no incentive for repudiation or

collusion. Therefore, delegating a small part of the owner’s work to the TTP reduces both the storage

and computation overheads. However, the outsourced data must be kept private and any possible leakage

of data towards the TTP must be prevented.

5.2 Overview and Rationale

The proposed scheme in this work addresses important issues related to outsourcing data storage:

dynamic data, newness, mutual trust, and access control. The owner is allowed to update and scale

the outsourced data file. Validating such dynamic data and its newness property requires the knowledge

of some metadata that reflects the most recent modifications issued by the owner. Moreover, it requires

the awareness of block indices to guarantee that the CSP has inserted, added, or deleted the blocks at

the requested positions. To this end, the proposed scheme is based on using combined hash values and a

small data structure, which we call block status table (BST). The TTP establishes the mutual trust among

different system components in an indirect way.

For enforcing access control of the outsourced data, the proposed scheme utilizes and combines three

cryptographic techniques: bENC, lazy revocation, and key rotation. The bENC enables a data owner to

encrypt some secret information to only authorized users allowing them to access the outsourced data

file. Through lazy revocation, revoked users can read unmodified data blocks, while updated/new blocks

are encrypted under new keys generated from the secret information broadcast to the authorized users.

Using key rotation, the authorized users are able to access both updated/new blocks and unmodified

ones that are encrypted under older versions of the current key.

5.3 Notations

− F is a data file to be outsourced, and is composed of a sequence of m blocks, i.e., F = {b1, b2, . . . , bm}

− h is a cryptographic hash function

− DEK is a data encryption key

− EDEK is a symmetric encryption algorithm under DEK, e.g., AES (advanced encryption standard)

− E−1DEK is a symmetric decryption algorithm under DEK

− F̃ is an encrypted version of the file blocks

− FHTTP is a combined hash value for F̃ , and is computed and stored by the TTP

− THTTP is a combined hash value for the BST, and is computed and stored by the TTP

− ctr is a counter kept by the data owner to indicate the version of the most recent key

− Rot = 〈ctr, bENC(Kctr)〉 is a rotator, where bENC(Kctr) is a broadcast encryption of the key Kctr

− ⊕ is an XOR operator
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5.4 Block Status Table

The block status table (BST) is a small dynamic data structure used to reconstruct and access file blocks

outsourced to the CSP. The BST consists of three columns: serial number (SN ), block number (BN ), and

key version (KV). SN is an indexing to the file blocks. It indicates the physical position of each block

in the data file. BN is a counter used to make a logical numbering/indexing to the file blocks. Thus,

the relation between BN and SN can be viewed as a mapping between the logical number BN and the

physical position SN . KV indicates the version of the key that is used to encrypt each block in the data

file.

The BST is implemented as a linked list to simplify the insertion and deletion of table entries. During

implementation, SN is not needed to be stored in the table; SN is considered to be the entry/table

index. Thus, each table entry contains just two integers BN and KV (8 bytes), i.e., the total table size is

8m bytes, where m is the number of file blocks.

When a data file is initially created, the owner initializes both ctr and KV of each block to 1. If block

modification or insertion operations are to be performed following a revocation, ctr is incremented by 1

and KV of that modified/new block is set to be equal to ctr.

Fig. 2 shows some examples demonstrating the changes in the BST due to dynamic operations on a

data file F = {bj}1≤j≤8. When the file blocks are initially created (Fig. 2a), ctr is initialized to 1, SN j =

BN j = j, and KVj = 1: 1 ≤ j ≤ 8. Fig. 2b shows no change for updating the block at position 5 since

no revocation is performed. To insert a new block after position 3 in the file F , Fig. 2c shows that a new

entry 〈4, 9, 1〉 is inserted in the BST after SN 3, where 4 is the physical position of the newly inserted

block, 9 is the new logical block number computed by incrementing the maximum of all previous logical

block numbers, and 1 is the version of the key used for encryption.

A first revocation in the system increments ctr by 1 (ctr = 2). Modifying the block at position 5 following

a revocation (Fig. 2d) results in setting KV5 = ctr. Thus, the table entry at position 5 becomes 〈5, 4, 2〉.

Fig. 2e shows that a new block is to be inserted after position 6 following a second revocation, which

increments ctr to be 3. In Fig. 2e, a new table entry 〈7, 10, 3〉 is inserted after SN 6, where KV7 is set to

be equal to ctr (the most recent key version). Deleting a block at position 2 from the data file requires

deleting the table entry at SN 2 and shifting all subsequent entries one position up (Fig. 2f). Note that

during all dynamic operations, SN indicates the actual physical positions of the data blocks in F .
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Fig. 2: Changes in the BST due to different dynamic operations on a file F = {bj}1≤j≤8. SN is the serial number,

BN is the block number, and KV is the key version.

5.5 Procedural Steps of the Proposed Scheme

� Setup and File Preparation. The setup is done only once during the life time of the data storage

system, which may be for tens of years. The system setup has two parts: one is done on the owner

side, and the other is done on the TTP side.

� Owner Role. The data owner initializes ctr to 1, and generates an initial secret key Kctr/K1. Kctr

can be rotated forward following user revocations, and rotated backward to enable authorized

users to access blocks that are encrypted under older versions of Kctr.

For a file F = {bj}1≤j≤m, the owner generates a BST with SN j = BN j = j and KVj = ctr.

To achieve privacy-preserving, the owner creates an encrypted file version F̃ = {b̃j}1≤j≤m,
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where b̃j = EDEK(BN j ||bj) and DEK = h(Kctr).2 Moreover, the owner creates a rotator Rot =

〈ctr, bENC(Kctr)〉, where bENC enables only authorized users to decrypt Kctr and access the

outsourced file. The owner sends {F̃ ,BST, Rot} to the TTP, and deletes the data file from its

local storage.

Embedding BN j with the block bj during the encryption process helps in reconstructing the

file blocks in the correct order. If the encrypted blocks {b̃j}1≤j≤m are not corrupted over cloud

servers, but randomly delivered to an authorized user, the latter can utilize the embedded BN j

and the BST to orderly reconstruct the data file F . More details will be explained later.

� TTP Role. As previously explained, a small part of the owner’s work is delegated to the TTP to

reduce the storage overhead and lower the overall system computation. For the TTP to resolve

disputes that may arise regarding data integrity/newness, it computes and locally stores com-

bined hash values for the encrypted file F̃ and the BST. The TTP computes FHTTP = ⊕mj=1 h(b̃j)

and THTTP = ⊕mj=1 h(BN j ||KVj), then sends {F̃ ,BST} to the CSP. The TTP keeps only FHTTP

and THTTP on its local storage.

Remark 2. The BST is used by the authorized users to reconstruct and access the outsourced data

file. The proposed scheme in this work assumes that the data owner is intermittently online and the

authorized users are enabled to access the data file even when the owner is offline. To this end, the

CSP stores a copy of the BST along with the outsourced data file. When an authorized user requests

to access the data, the CSP responds by sending both the BST and the encrypted file F̃ .

...Moreover, the BST is used during each dynamic operation on the outsourced data file, where one

table entry is modified/inserted/deleted with each dynamic change on the block level. If the BST is

stored only on the CSP side, it needs to be retrieved and validated each time the data owner wants

to issue a dynamic request on the outsourced file. To avoid such communication and computation

overheads, the owner keeps a local copy of the BST, and thus there are two copies of the BST: one

is stored on the owner side referred to as BSTO, and the other is stored on the CSP side referred to

as BSTC . Recall that the BST is a small dynamic data structure with a table entry size = 8 bytes. For

1GB file with 4KB block size, the BST size is only 2MB (0.2% of the file size). Table 1 summarizes

the data stored by each component in the proposed scheme.

TABLE 1: Data stored by each component in the proposed scheme.

Owner TTP CSP

ctr, Kctr , BSTO Rot, FHTTP , THTTP F̃ , BSTC

2. Hash in needed to compress the size of Kctr
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� Dynamic Operations on the Outsourced Data. The dynamic operations in the proposed scheme are

performed at the block level via a request in the general form 〈BlockOp, TEntryBlockOp, j, KVj , h(b̃j),

RevFlag, b∗〉, where BlockOp corresponds to block modification (denoted by BM), block insertion

(denoted by BI), or block deletion (denoted by BD). TEntryBlockOp indicates an entry in BSTO corre-

sponding to the issued dynamic request. The parameter j indicates the block index on which the

dynamic operation is to be performed, KVj is the value of the key version at index j of BSTO

before running a modification operation, and h(b̃j) is the hash value of the block at index j before

modification/deletion. RevFlag is a 1-bit flag (true/false and is initialized to false) to indicate

whether a revocation has been performed, and b∗ is the new block value.

� Modification. Data modification is one of the most frequently used dynamic operations in the

outsourced data. For a file F = {b1, b2, . . . , bm}, suppose the owner wants to modify a block bj

with a block b′j . Fig. 3 describes the steps performed by each system component (owner, CSP, and

TTP) during block modification. The owner uses the technique of one-sender-multiple-receiver

(OSMR) transmission to send the modify request to both the CSP and the TTP.

The TTP updates the combined hash value FHTTP for F̃ through the step FHTTP = FHTTP ⊕

h(b̃j) ⊕ h(b̃′j), which simultaneously replaces the hash of the old block h(b̃j) with the new one

h(b̃′j). This is possible due to the basic properties of the ⊕ operator. The same idea is used when

RevFlag = true to update the combined hash value THTTP on the TTP side by replacing the

hash of the old table entry at index j with the hash of the new value.

� Insertion. In a block insertion operation, the owner wants to insert a new block b̄ after index

j in a file F = {b1, b2, . . . , bm}, i.e., the newly constructed file F ′ = {b1, b2, . . . , bj , b̄, . . . , bm+1},

where bj+1 = b̄. The block insertion operation changes the logical structure of the file, while

block modification does not. Fig. 4 describes the steps performed by each system component

(owner, CSP, and TTP) during block insertion.

� Append. Block append operation means adding a new block at the end of the outsourced data.

It can simply be implemented via insert operation after the last block of the data file.

� Deletion. Block deletion operation is the opposite of the insertion operation. When one block is

deleted all subsequent blocks are moved one step forward. Fig. 5 describes the steps performed

by each system component (owner, CSP, and TTP) during block deletion. The step FHTTP =

FHTTP ⊕h(b̃j) is used to delete the hash value of the block b̃j from the combined hash FHTTP

(properties of ⊕ operator). The same idea is used with the THTTP value.

� Data Access and Cheating Detection. Fig. 6 shows the verifications performed for the data received

from the CSP, and presents how authorized users get access to the outsourced file.

An authorized user sends a data-access request to both the CSP and the TTP to access the outsourced

file. For achieving non-repudiation, the CSP generates two signatures σF and σT for F̃ and BSTC ,
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/* Modification of a block bj with b′j for the outsourced file */

/* RevFlag is initialized to false */

Data Owner

1) If the access of one or more users has been revoked then

a) Rolls Kctr forward (using key rotation)

b) Increments ctr = ctr + 1, and sets RevFlag = true

c) Copies KVj from BSTO to KVj (i.e., KVj = KVj)

d) Sets KVj = ctr in BSTO, and generates Rot = 〈ctr, bENC(Kctr)〉

e) Sends Rot to the TTP

2) Creates an encrypted block b̃′j = EDEK(BN j ||b′j), where DEK = h(Kctr)

3) Forms a block-modify table entry TEntryBM = {BN j ,KVj}

4) Sends a modify request 〈BM, TEntryBM, j, KVj , h(b̃j), RevFlag, b̃′j〉 to both the CSP and the TTP

(OSMR transmission), where h(b̃j) is the hash of the outsourced block to be modified. The KVj is

not sent in the modify request if RevFlag = false

5) The CSP accepts the modify request only if {BN j ,KVj} sent from the owner matches {BN j ,KVj}

in BSTC , and h(b̃j) is equal to the hash of the block b̃j on the cloud server (to guarantee that correct

values are sent to the TTP)

CSP /* upon accepting the modify request from the owner */

1) Replaces the block bj with b′j in the outsourced file F̃

2) If RevFlag = true then

Updates the table entry at index j of BSTC using TEntryBM components

TTP

1) Updates FHTTP = FHTTP ⊕ h(b̃j)⊕ h(b̃′j)

2) If RevFlag = true then

a) Updates the previously stored Rot with the newly received value

b) Updates THTTP = THTTP ⊕ h(BN j ||KVj)⊕ h(BN j ||KVj)

Fig. 3: Block modification procedure in the proposed scheme.

respectively. The authorized user receives {F̃ , BSTC σF , σT } from the CSP, and {FHTTP , THTTP ,

Rot} from the TTP. The authorized user verifies the signatures, and proceeds with the data access

procedure only if both signatures are valid.

The authorized user verifies the contents of BSTC entries by computing a combined hash value

THU = ⊕mj=1 h(BN j ||KVj), and comparing it with the authentic value THTTP received from the
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/* Insertion of a block b̄ after index j in the outsourced file */

/* RevFlag is initialized to false */

Data Owner

1) If the access of one or more users has been revoked then

a) Rolls Kctr forward (using key rotation)

b) Increments ctr = ctr + 1, and sets RevFlag = true

c) Generates Rot = 〈ctr, bENC(Kctr)〉

d) Sends Rot to the TTP

2) Constructs a new block-insert table entry TEntryBI = {BN j+1,KVj+1} = {1 + Max{BN j}1≤j≤m,

ctr}, and inserts this entry in BSTO after index j

3) Creates an encrypted block ˜̄b = EDEK(BN j ||b̄), where DEK = h(Kctr)

4) Sends an insert request 〈BI, TEntryBI, j, null, null, RevFlag,
˜̄b〉 to both the CSP and the TTP

(OSMR transmission)

CSP /* upon receiving the insert request from the owner */

1) Inserts the block ˜̄b after index j in the outsourced file F̃

2) Inserts the table entry TEntryBI after index j in the BSTC

TTP

1) Updates FHTTP = FHTTP ⊕ h(˜̄b)

2) Updates THTTP = THTTP ⊕ h(BN j+1||KVj+1)

3) If RevFlag = true then

Replaces the previously stored Rot with the newly received value

Fig. 4: Block insertion procedure in the proposed scheme.

TTP. If the authorized user claims that THU 6= THTTP , a report is issued to the owner and the TTP

is invoked to determine the dishonest party.

In case of THU = THTTP , the authorized user continues to verify the contents of the file F̃ . A

combined hash value FHU = ⊕mj=1 h(b̃j) is computed and compared with FHTTP . If there is a

dispute that FHU 6= FHTTP , the owner is informed and we resort to the TTP to resolve such a

conflict.

For the authorized user to access the encrypted file F̃ = {b̃j}1≤j≤m, BSTC and Rot are used to

generate the key DEK that decrypts the block b̃j . bENC(Kctr) is decrypted to get the most recent

key Kctr. Using the key rotation technique, the authorized user rotates Kctr backward with each

block until it reaches the version that is used to decrypt the block b̃j . Both ctr and the key version



19

/* Deletion of a block bj from the outsourced file */

Data Owner

1) Copies the entry at index j from BSTO to a block-delete table entry TEntryBD = {BN j ,KVj}

2) Deletes the entry at index j from BSTO

3) Sends a delete request 〈BD, TEntryBD, j, null, h(b̃j), false, null〉 to both the CSP and the TTP

(OSMR transmission), where h(b̃j) is the hash of the outsourced block to be deleted

4) The CSP accepts the delete request only if TEntryBD sent from the owner matches {BN j ,KVj} in

BSTC and h(b̃j) is equal to the hash of the block b̃j on the cloud server (to guarantee that correct

values are sent to the TTP).

CSP /* upon receiving the delete request from the owner */

1) Deletes the block at index j (block b̃j) from the outsourced file F̃

2) Deletes the entry at index j from the BSTC

TTP

1) Updates FHTTP = FHTTP ⊕ h(b̃j)

2) Updates THTTP = THTTP ⊕ h(BN j ||KVj)

Fig. 5: Block deletion procedure in the proposed scheme.

KVj can determine how many rotation steps for Kctr with each block b̃j . Decrypting the block b̃j

returns (BN j ||bj). BN j and BSTC are utilized to get the physical block position SN j into which the

block bj is inserted, and thus the file F is reconstructed in plain form.

Optimization. In Fig. 6, the backward key rotation done in the inner for loop of step 7.b can be

highly optimized by computing a set of keys Q = {Ki} from Kctr. Each key Ki in Q is the result of

rotating Kctr backward ctr − i times. For example, if ctr = 20, a set Q = {K1,K5,K10,K15} can be

computed from Kctr. To decrypt a block b̃j , the authorized user chooses one key Ki from Q, which

has the minimum positive distance i − KVj . The key Ki is then rotated backward to get the actual

key that is used to decrypt the block b̃j . A relatively large portion of the outsourced data is kept

unchanged on the CSP, and thus K1 from Q can be used to decrypt many blocks without any further

key rotation. The size of the set Q is negligible compared with the size of the received data file.

Fig. 7 shows how the TTP determines the dishonest party in the system. The TTP verifies the

signatures σT and σF , which are previously verified and accepted by the authorized user. If any

signature is invalid, this indicates that the owner/user is dishonest for corrupting either the data

or the signatures. In case of valid signatures, the TTP computes temporary combined hash values

THtemp = ⊕mj=1 h(BN j ||KVj) and FHtemp = ⊕mj=1 h(b̃j). If THtemp 6= THTTP or FHtemp 6= FHTTP ,
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1) An authorized user sends a data-access request to both the CSP and the TTP

2) The CSP responds by sending the outsourced file F̃ = {b̃j}1≤j≤m associated with a signature σF

(CSP’s signature on the entire file), and sending BSTC associated with a signature σT (CSP’s signature

on the entire table) to the authorized user

3) The authorized user verifies σF and σT , and accepts the data only if σF and σT are valid signatures

4) The TTP sends FHTTP , THTTP , and Rot = 〈ctr,bENC(Kctr)〉 to the authorized user

5) Verification of the BSTC entries

a) The authorized user computes THU = ⊕mj=1 h(BN j ||KVj)

b) If the authorized user claims that THU 6= THTTP then report ”integrity violation” to the owner

and invoke cheating detection procedure (Fig. 7)

6) Verification of the data file F̃

a) The authorized user computes FHU = ⊕mj=1 h(b̃j)

b) If the authorized user claims that FHU 6= FHTTP then report ”integrity violation” to the

owner and invoke cheating detection procedure (Fig. 7)

7) Data access

a) The authorized user gets Kctr by decrypting bENC(Kctr) part in Rot

b) for j = 1 to m do

/* rotate backward the current Kctr to the version that is used to decrypt the block b̃j */

– Set Kj = Kctr

– for i = 1 to ctr - KVj do

. Kj = (Kj)
e mod N /* N is the RSA modulus and (N, e) is the RSA public key */

end for

– (BN j ||bj) = E−1DEK(b̃j), where DEK = h(Kj)

– Get the physical position SN j of bj using BN j and BSTC

– The authorized user places bj in the correct order of the decrypted file F

end for

Fig. 6: Data access procedure in the proposed scheme.

this indicates that the CSP is dishonest for sending corrupted data to the authorized user, otherwise

the owner/user is dishonest for falsely claiming integrity violation of received data.
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Cheating Detection Procedure: determination of the dishonest party.

The TTP is invoked to determine which component is misbehaving as follows.

1) The TTP verifies σT and σF

2) If any signature verification fails then

. TTP reports ”dishonest owner/user” and exits

3) The TTP computes THtemp = ⊕mj=1 h(BN j ||KVj) and FHtemp = ⊕mj=1 h(b̃j)

4) If THtemp 6= THTTP or FHtemp 6= FHTTP then

. TTP reports ”dishonest CSP” and exits /* data is corrupted */

else

. TTP reports ”dishonest owner/user” and exits /* data is NOT corrupted */

Fig. 7: Cheating detection procedure in the proposed scheme.

6 SECURITY ANALYSIS

In this section we investigate the security of the proposed scheme by analyzing its fulfillment of the

security requirements described in Section 3, namely, confidentiality, integrity, newness, access control,

and CSP’s defence.

Data confidentiality. We need to prove that the CSP, the TTP, and unauthorized users cannot access the

outsourced data.

Theorem 1. The proposed scheme preserves the confidentiality of the outsourced data against the CSP, the TTP,

and unauthorized users.

Proof (Sketch). Before outsourcing a data file F = {bj}1≤j≤m, the owner generates an encrypted version

F̃ = {b̃j}1≤j≤m, where b̃j = EDEK(BN j ||bj), and DEK = h(Kctr). The encrypted data file F̃ is sent to

the TTP for computing FHTTP and to the CSP for storage.

Based on the security of the underlying symmetric encryption algorithm EDEK , the confidentiality

of the outsourced file F̃ is preserved on the CSP side (e.g., our proposed scheme utilizes AES – a

standardized encryption algorithm by NIST [48] – with 128-bit security level to achieve a robust security

requirement).

The data confidentiality on the TTP side is based on the security of the underlying broadcast encryp-

tion algorithm bENC. To decrypt F̃ , the key Kctr is needed to generate DEK. The TTP stores Rot =

〈ctr, bENC(Kctr)〉. Thus, for the TTP to get Kctr, bENC must be broken (the proposed scheme utilizes

bENC [45], which is proved to be semantically secure).

bENC also prevents unauthorized users from getting Kctr to access the data file F̃ . Moreover, based

on the hardness of the RSA problem [49], revoked users who possess Kl (l < ctr) are not able to generate
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Kctr. Hence, such revoked users can access only stale data blocks, while updated or new blocks encrypted

using Kctr are kept secret. �

Detection of data integrity violation. We want to make sure that any corruption to the outsourced data

file F̃ or the table BSTC on cloud servers can be detected. We prove this feature for F̃ and the same ideas

are applied to BSTC . The proof depends on the preimage and second-preimage resistance properties of

the cryptographic hash function h.

Definitions.

1) Preimage resistance: given a hash value y, it is computationally infeasible to find any input x such

that h(x) = y [50]. Input x is called a preimage of y.

2) Second-preimage: given an input x, it is computationally infeasible to find a second input x′ 6= x

such that h(x) = h(x′) [50].

Theorem 2. Given a cryptographic hash function h with preimage and second-preimage resistance properties along

with the non-collusion incentive of the TTP, any attempt to violate the integrity of outsourced data file on cloud

servers will be detected.

Proof. We prove the theorem by contradiction. The goal of a dishonest CSP is to send a corrupted or stale

data file to authorized users without being detected. Let D̃ = {d̃j}1≤j≤m be the data file received by an

authorized user from the CSP during the data access phase of the proposed scheme, where {d̃j}1≤j≤m
denotes the file blocks. Let F̃ = {b̃j}1≤j≤m be the actual outsourced data file. The authorized user

receives the authentic FHTTP from the TTP, computes FHU = ⊕mj=1 h(b̃j), and checks FHU
?
= FHTTP .

If FHU 6= FHTTP , then D̃ 6= F̃ (data has been corrupted on cloud servers).

For violating data integrity without being detected there are two possible scenarios. First, the CSP has

to generate values {h∗j}1≤j≤m such that FHTTP = ⊕mj=1 h
∗
j , and at least one h∗j 6= h(b̃j). If the CSP could

create D̃ = {d̃j}1≤j≤m such that h∗j = h(d̃j) ∀j, the cheating is possible. Due to the preimage-resistance

property of h (one-way function), the CSP cannot generate such a data file D̃, i.e., d̃j must be equal to

b̃j ∀j.

Second, the received data D̃ has at least one block d̃j 6= b̃j , but h(d̃j) = h(b̃j) ∀j to guarantee that

FHU = FHTTP . Due to the second-preimage resistance property of h, there is no such a data file D̃, i.e.,

d̃j must be equal to b̃j ∀j. �

Remark 3. The encrypted block b̃j = EDEK(BN j ||bj). Block number BN j is embedded with the block bj

to be used along with BSTC to orderly reconstruct the plain file F if the blocks {bj}1≤j≤m are randomly

received. Using a proof similar to that of Theorem 2, we can show that BSTC cannot be corrupted without

being detected. Swapping the entries of BSTC without changing their contents can cause the file F to be

reconstructed in an incorrect order. Although the CSP has no incentive and no financial benefit of doing

such swapping, one can defend this weird behavior by storing the BN column of BSTO on the TTP side.
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The authorized user can retrieve and use this column during the data access phase. This countermeasure

adds little extra storage on the TTP (4m bytes).

Assurance of newness property. Assurance of newness property is identical to detection of data integrity

violation. With each dynamic operation (modification, insertion, deletion, append), the TTP update the

values FHTTP and THTTP to reflect the most recent state of the outsourced data. Thus, the CSP cannot

respond to an access request by sending stale data without being detected.

Enforcement of access control. The proposed scheme combines the techniques of broadcast encryption

key rotation, and lazy revocation to enforce access control of outsourced data.

Theorem 3. Users can be granted or revoked access to outsourced data.

Proof (Sketch). The owner creates Rot = 〈ctr, bENC(Kctr)〉 and encrypts the outsourced data using DEK =

h(Kctr). Broadcast encryption bENC allows the data owner to encrypt the key Kctr for an arbitrary subset

of a group of users. According to the security strength of bENC [45], the users in the subset are only

allowed to decrypt Kctr and access the outsourced data.

It is acceptable for revoked users to access unmodified data blocks. However, updated/new blocks must

be inaccessible by such revoked users. In case of data modification/insertion following a revocation, the

data owner rolls Kctr forward: Kctr+1 = Kd
ctr mod N , and then increments ctr by 1 (preparing for next

rotation). Based on the hardness of the RSA problem [49], revoked users who possess Kl (l < ctr) are not

able to generate Kctr. Thus, combining broadcast encryption, key rotation, and lazy revocation achieves

access control in the proposed scheme.

Detection of dishonest owner/user. The CSP signs both the file F̃ and the table BSTC . The generated

signatures σF and σT are sent along with F̃ and BSTC to an authorized user during the data access

phase. If the signature scheme is existentially unforgeable, the owner/user cannot falsely accuse the CSP

regarding data integrity; the TTP performs signature verifications if there is a claim of data corruption.

Recall that the signatures σF and σT are accepted by the authorized user as valid signatures in the

beginning of the data access phase (step 3 in Fig. 6).

7 PERFORMANCE ANALYSIS

The data file F used in our performance analysis is of size 1GB with 4KB block size. Without loss of

generality, we assume that the desired security level is 128-bit. Thus, we utilize a cryptographic hash h

of size 256 bits (e.g., SHA-256), an elliptic curve defined over Galois field GF (p) with |p| = 256 bits (used

for bENC), and BLS (Boneh-Lynn-Shacham) signature [51] of size 256 bits (used to compute σF and σT ).

Here we evaluate the performance of the proposed scheme by analyzing the storage, communication,

and computation overheads. We investigate overheads that the proposed scheme brings to a cloud storage

system for static data with only confidentiality requirement. This investigation demonstrates whether the
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features of our scheme come at a reasonable cost. The computation overhead is estimated in terms of the

used cryptographic functions, which are notated in Table 2.

TABLE 2: Notation of cryptographic functions

Notation Description

h Cryptographic hashing

FR Forward key rotation

BR Backward key rotation

Sσ Signature genration

Vσ Signature verification

EDEK Symmetric encryption using the key DEK

bENC−1 Decryption of bENC

Let m and n denote the number of file blocks and the total number of system users, respectively.

Table 3 presents a theoretical analysis for the storage, communication, and computation overheads of

the proposed scheme. Table 4 summarizes the storage and communication overheads for our data file F

(1GB with 4KB block size) and 100,000 authorized users. The notation [*] indicates that the parameter *

does not always exist in the overhead expression.

TABLE 3: Overhead analysis of the proposed scheme. The notation [*] indicates that the parameter * does not always

exist in the overhead expression. † The ⊕ is not considered (negligible effect)

Overheads Operations Owner User CSP TTP

Storage Overhead

(in bytes)
8m — 8m 68+32

√
n

Communication

Overhead (in bytes)

Dynamic

Operations
45 + [ 8 + 32

√
n] — — —

Data Access — — 64 + 8m 68 + 32
√
n

Computation Overhead

Dynamic

Operations

h + EDEK +

[FR+ bENC]
— — 2h + [2h] †

Data Access —
2Vσ + 3mh +

2Sσ —
bENC−1 + [BR] †

Cheating

Detection
2Vσ + [2mh] †
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TABLE 4: Storage and communication overheads for the data file F (1GB with 4KB block size) and 100,000 authorized

users. ‡ Storage overhead is independent of F .

Overheads Operations Owner User CSP TTP

Storage Overhead
2MB — 2MB ≈ 10KB ‡

Communication

Overhead

Dynamic

Operations
45 bytes + [≈ 10KB] — — —

Data Access — — ≈ 2MB ≈ 10KB

7.1 Comments

Storage overhead is the additional storage space used to store necessary information other than the

outsourced file F̃ . The overhead on the owner side is due to storing BSTO. An entry of BSTO is of

size 8 bytes (two integers), and the total number of entries equals the number of file blocks m. During

implementation SN is not needed to be stored in BSTO; SN is considered to be the entry/table index

(BSTO is implemented as a linked list). The size of BSTO for the file F is only 2MB (0.2% of F ). BSTO

size can be further reduced if the file F is divided into larger blocks (e.g., 16KB). Like the owner, the

storage overhead on the CSP side comes from the storage of BSTC . To resolve disputes that may arise

regarding data integrity or newness property, the TTP stores FHTTP and THTTP , each of size 256 bits.

Besides, the TTP stores Rot = 〈ctr, bENC(Kctr)〉 that enables the data owner to enforce access control for

the outsourced data. ctr is 4 bytes, and bENC has storage complexity O(
√
n), which is practical for an

organization (data owner) with n = 100,000 users. A point on the elliptic curve used to implement bENC

can be represented by 257 bits (≈ 32 bytes) using compressed representation [52]. Therefore, the storage

overhead on the TTP side is close to 10KB, which is independent of the outsourced file size. Overall, the

storage overhead of the proposed scheme for the file F is less than 4.01MB (≈ 0.4% of F ).

The communication overhead is the additional information sent along with the outsourced data blocks.

During dynamic operations, the communication overhead on the owner side comes from the transmission

of a block operation BlockOP (can be represented by 1 byte), a table entry TEntryBlockOP (8 bytes), and

a block index j (4 bytes). If a block is to be modified following a revocation process, KVj (4 bytes) is

sent to the TTP. Moreover, in case of a block modification/deletion, the owner sends a hash (32 bytes)

of the block to be modified/deleted to the TTP for updating FHTTP . Recall that the owner also sends

Rot (4 + 32
√
n bytes) to the TTP if block modifications/insertions are to be performed following user

revocations. Therefore, in the worst case scenario (i.e., block modifications following revocations), the

owner’s overhead is less than 10KB. The Rot represents the major factor in the communication overhead,

and thus the overhead is only 45 bytes if block modification/deletion operations are to be preformed

without revocations (only 13 bytes for insertion operations). In practical applications, the frequency of
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dynamic requests to the outsourced data is higher than that of user revocations. Hence, the communication

overhead due to dynamic changes on the data is about 1% of the block size (the block is 4KB in our

analysis).

As a response to access the outsourced data, the CSP sends the file along with σF (32 bytes), σT (32

bytes), and BSTC (8m bytes). Moreover, the TTP sends FHTTP (32 bytes), THTTP (32 bytes), and Rot.

Thus, the communication overhead due to data access is 64 + 8m bytes on the CSP side, and 68 + 32
√
n

bytes on the TTP side. Overall, to access the file F , the proposed scheme has communication overhead

close to 2.01MB (≈ 0.2% of F ).

A cloud storage system for static data with only confidentiality requirement has computation cost

for encrypting the data before outsourcing and decrypting the data after being received from the cloud

servers. For the proposed scheme, the computation overhead on the owner side due to dynamic operations

(modification/insertion) comes from computing DEK = h(Kctr) and encrypting the updated/inserted

block, i.e., the overhead is one hash and one encryption operations. If a block modification/insertion

operation is to be performed following a revocation of one or more users, the owner performs FR to

roll Kctr forward, and bENC to generate the Rot. Hence, the computation overhead on the owner side

for the dynamic operations is h + EDEK + FR + bEnc (worst case scenario). Updating BSTO and BSTC

is done without usage of cryptographic operations (add, remove, or modify a table entry).

To reflect the most recent version of the outsourced data, the TTP updates the values FHTTP and

THTTP . If no revocation has been performed before sending a modify request, only FHTTP is updated

on the TTP side. Therefore, the maximum computation overhead on the TTP side for updating both

FHTTP and THTTP is 4h.

Before accessing the data received from the CSP, the authorized user verifies two signatures (generated

by the CSP), BSTC entries, and the data file. These verifications cost 2Vσ + 2mh. Moreover, the authorized

user decrypts bENC(Kctr) part in the Rot to get Kctr. For each received block, Kctr is rotated backward to

obtain the actual key that is used to decrypt the data block. The optimized way of key rotation (using the

set Q) highly affects the performance of data access; many blocks need a few or no rotations. Moreover,

one hash operation is performed per block to compute DEK. Overall, the computation overhead due to

data access is 2Vσ + 3mh + bENC−1 + [BR] on the owner side, and 2Sσ on the CSP side.

For determining a dishonest party, the TTP verifies σT and σF . In case of valid signatures, the TTP

proceeds to compute THtemp and FHtemp. The values THtemp and FHtemp are compared with THTTP

and FHTTP , respectively. Hence, the maximum computation overhead on the TTP side due to cheating

detection is 2Vσ + 2mh.



27

8 IMPLEMENTATION AND EXPERIMENTAL EVALUATION

8.1 Implementation

We implement the proposed scheme on top of Amazon Elastic Compute Cloud (Amazon EC2) [53] and

Amazon Simple Storage Service (Amazon S3) [54] cloud platforms.

Amazon EC2 is a web service that enables customers to lunch and manage Linux/Unix and Windows

server instances (virtual servers) in Amazon’s data centers. Amazon EC2 instance can contain applications,

libraries, data, and associated configuration settings. Amazon Web Services (AWS) Management Console

is used to start, stop, reboot, scale, terminate, and monitor EC2 instances. Customers can automatically

scale up and down the number of EC2 instances according to their demands. Moreover, customers can

upgrade and downgrade a specific EC2 instance to fit current requirements.

Amazon S3 is storage for the Internet. It provides a simple web services interface that can be used to

store and retrieve almost unlimited amount of data. Amazon S3 stores data as objects within buckets.

A bucket can contain unlimited number of objects, where an object is compromised of a data file (any

kind: a text file, a photo, a video) and optionally any metadata that describes that file. The object can

contain from 1 byte to 5 terabytes of data. Customers are allowed to choose the geographic locations

where Amazon S3 will store the bucket and its contents. Using AWS Management Console, we can create

/delete buckets and upload/delete data files. Moreover, folders can be created inside a bucket to group

objects.

The proposed scheme consists of four modules: OModule (owner module), CModule (CSP module),

UModule (user module), and TModule (TTP module). OModule, which runs on the owner side, is a library

to be used by the owner to perform the owner role in the setup and file preparation phase. Moreover,

this library is used by the owner during the dynamic operations on the outsourced data. CModule is

a library that runs on Amazon EC2 and is used by the CSP to store, update, and retrieve data from

Amazon S3. UModule is a library to be run at the authorized users’ side, and include functionalities that

allow users to interact with the TTP and the CSP to retrieve and access the outsourced data. TModule is

a library used by the TTP to perform the TTP role in the setup and file preparation phase. Moreover, the

TTP uses this library during the dynamic operations and to determine the cheating party in the system.

Implementation settings. In our implementation we use a ”large” Amazon EC2 instance to run CModule.

This instance type provides total memory of size 7.5 GB and 4 EC2 Compute Units (2 virtual cores with

2 EC2 Compute Units each). One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0 -

1.2 GHz 2007 Opteron or 2007 Xeon processor [55]. The other three modules are executed on a desktop

computer with Intel(R) Xeon (R) 2 GHz processor and 3GB RAM running Windows XP. We outsource

a data file of size 1GB to Amazon S3. Algorithms (hashing, broadcast encryption, digital signatures,

etc.) are implemented using MIRACL library version 5.5.4. For a 128-bit security level, bENC uses an

elliptic curve with a 256-bit group order. In the experiments, we utilize SHA-256, 256-bit BLS signature,
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and Barreto-Naehrig (BN) [56] curve defined over prime field GF (p) with |p| = 256 bits and embedding

degree = 12 (the BN curve with these parameters is provided by the MIRACL library).

8.2 Experimental Evaluation

In this section we experimentally evaluate the computation overhead the proposed scheme brings to a

cloud storage system that has been dealing with static data with only confidentiality requirement.

To experimentally evaluate the computation overhead on the owner side due to the dynamic operations,

we perform 100 different block operations with number of authorized users ranging from 20,000 to

100,000. We run our experiment three times, each time with a different revocation percentage. In the

first time, 5% of 100 dynamic operations are executed following revocations. We increase the revocation

percentage to 10% for the second time and 20% for the third time. Fig. 8 shows the owner’s average

computation overhead per operation. For a large organization (data owner) with 100,000 users, performing

dynamic operations and enforcing access control with 5% revocations add about 63 milliseconds of

overhead. With 10% and 20% revocation percentages, which are high percentages than an average value

in practical applications, the owner overhead is 0.12 and 0.25 seconds, respectively.
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Fig. 8: Owner’s average computation overhead due to dynamic operations.

Scalability (i.e., how the system performs when more users are added) is an important feature of

cloud storage systems. The access control of the proposed scheme depends on the square root of the

total number of system users. Fig. 8 shows that for a large organization with 100,000 users, performing

dynamic operations and enforcing access control for outsourced data remains practical.

Table 5 shows the computation overheads of the proposed scheme on the TTP, the CSP, and the

authorized users sides.

In the worst case, the TTP executes only 4 hashes per dynamic request to reflect the change on the

outsourced data. Thus, the maximum computation overhead on the TTP side is about 0.08 milliseconds,

i.e., the proposed scheme brings light overhead on the TTP during the normal system operations.
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TABLE 5: Experimental results of the computation overheads

Component TTP Authorized Users CSP

Computation Overhead 0.08 ms / 6.46 s 0.6 s 6.04 s

To identify the dishonest party in the system in case of disputes, the TTP verifies two signatures (σF

and σT ), computes combined hashes for the data (file and table), and compare the computes hashes with

the authentic values (THTTP and FHTTP ). Thus, the computation overhead on the TTP side is about

6.46 seconds. Through our experiments, we use only one desktop computer to simulate the TTP and

accomplish its work. The TTP may choose to split the work among a few devices or use a single device

with a multi-core processor which is becoming prevalent these days, and thus the computation time on

the TTP side is significantly reduced in many applications.

The computation overhead on the user side due to data access comes from five aspects divided into

two groups. The first group involves signatures verification and hash operations to verify the received

data (file and table). The second group involves broadcast decryption, backward key rotations, and hash

operations to compute the DEK. The first group costs about 6.46 seconds, which can be easily hidden

in the receiving time of the data (1GB file and 2MB table).

To investigate the computation time of the second group, we access the file after running 100 different

block operations (with 5% and 10% revocation percentages). Moreover, we implement the backward key

rotations in the optimized way. The second group costs about 0.6 seconds, which can be considered as

the user’s computation overhead due to data access.

As a response to the data access request, the CSP computes two signatures: σF and σT . Thus, the

computation overhead on the CSP side due to data access is about 6.45 seconds and can be easily hidden

in the transmission time of the data (1GB file and 2MB table).

9 CONCLUSIONS

Outsourcing data to remote servers has become a growing trend for many organizations to alleviate

the burden of local data storage and maintenance. In this work we have studied different aspects of

outsourcing data storage: block-level dynamic operations, newness, mutual trust, and access control.

We have proposed a cloud-based storage scheme which supports outsourcing of dynamic data, where

the owner is capable of not only archiving and accessing the data stored by the CSP, but also updating and

scaling this data on the remote servers. The proposed scheme enables the authorized users to ensure that

they are receiving the most recent version of the outsourced data. Moreover, in case of dispute regarding

data integrity/newness, a TTP is able to determine the dishonest party. The data owner enforces access

control for the outsourced data by combining three cryptographic techniques: broadcast encryption, lazy

revocation, and key rotation. We have studied the security features of the proposed scheme.
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In this paper, we have investigated the overheads added by the proposed scheme when incorporated

into a cloud storage model for static data with only confidentiality requirement. The storage overhead is

≈ 0.4% of the outsourced data size, the communication overhead due to block-level dynamic changes

on the data is ≈ 1% of the block size, and the communication overhead due to retrieving the data is ≈

0.2% of the outsourced data size. For a large organization (data owner) with 100,000 users, performing

dynamic operations and enforcing access control add about 63 milliseconds of overhead. Therefore,

important features of outsourcing data storage can be supported without excessive overheads in storage,

communication, and computation.
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