
Effective Security Assessments and Testing

David Culbreth, Adan Guadarrama, Ayad Barsoum*
St. Mary’s University, San Antonio, TX (USA)

Emails: aguadarrama@mail.stmarytx.edu, dculbreth@mail.stmarytx.edu, abarsoum@stmarytx.edu

Abstract — Companies providing technology-driven

services are held to the high standard of full availability,

integrity, and confidentiality. Achieving even near-perfect

availability is an increasingly daunting task, even for

these companies with seemingly limitless resources. In

order to approach this very challenging goal, strategies

must be implemented to ensure that changes and

improvements to the provided services do not leave the

currently functioning environment vulnerable to attacks

or introduce new issues. Systems and processes must be

evaluated to ensure their efficient and effective operation.

Administrative security controls must be audited to ensure

the proper implementation of policies and procedures. A

failure to properly evaluate the programs and procedures

leaves an organization at risk for a data incident or an

attack on the organization’s assets. This paper covers

some of the most important elements of security

assessments and testing.

Keywords: Audit, Test Strategy, Change Control

I. INTRODUCTION

In recent years, the abuse and misuse of technical

resources and information has become a prevalent problem.

While technical capabilities have exponentially grown since

the invention of the computer, the ability of companies to

properly manage these resources has not kept up the pace. It

is now a daily occurrence to hear reports about where to not

save credit card information, how identity theft can come

from phone calls pretending to be banks, and how emails can

be used to send/receive false information. As a result of this,

security awareness has become increasingly important to

companies [6].

In 2013, Target suffered a data breach leaking

millions of customers’ personal and financial information

[7]. However, this data was not leaked due to compromised

internal systems. The data breach happened because of a

third-party vendor that takes care of the ventilation. As a

result of the data breach, thousands of shoppers at target

were now at risk of becoming victims of identity theft. The

settlement from this data breach resulted in Target having to

pay millions of dollars to settle lawsuits that started coming

their way. If Target would have successfully audited their

third-party vendor, they may have saved themselves all the

millions they lost in the settlement.

II. ESTABLISHING PRODUCT AND SYSTEM DEFINITIONS

Documenting the proper behavior of an application

is a necessary step for secure and reliable development in

every environment. This documentation should include the

system behavior and configurations, preferably as a process

diagram or as human-readable documentation. The inclusion

of testing from the beginning of any development has also

proven to be a useful supplement to the user documentation.

Using strategies like test driven development [4] or behavior

driven development [5] provide the opportunity for the

project management to define their requirements in a

formalized and reproducible fashion, such that the

functionality, once developed, is known to work to the

specifications and requirements initially produced. At IBM,

a development team was able to reduce their defect rate by

50 percent by implementing test-driven development

strategies in their retail store solutions [1]. In addition to the

dramatic decrease of defects, test-driven development

produces a reusable test asset, which is an invaluable tool

come the time for regression testing. Product and system

definitions provide critical guidance to the developers and

users during and after the development period. Test driven

development enhances this documentation with functional

proof that the product works as intended.

The process by which a change is deployed is just

as important as the testing that happens before it. Similarly,

the deployment process must also be thoroughly tested and

documented, as deploying a change to an application or an

infrastructure is perhaps the riskiest portion of the process,

as it adds an element of variation to an environment that is

likely already functioning. Every step of the deployment

process needs to be crafted with care and scrutiny. The tools

used to develop the code must be reviewed to ensure proper

code is generated. The repositories that store and track the

source code must be vetted to ensure the code is not at risk

for being leaked to prying eyes. Finally, when the package is

ultimately deployed, the configuration must be deployed

mailto:aguadarrama@mail.stmarytx.edu
mailto:dculbreth@mail.stmarytx.edu
mailto:abarsoum@stmarytx.edu

through a system known and tested to reliably deliver the

correct results [2]. Mature change management will

consider many aspects of each individual process. Each

change should document its intended effect, and the tests run

to ensure that the change executes its purpose with no

unintended side-effects. Additionally, the precise actions to

deploy the change will be vetted, checking whether this kind

of change has failed before, and that there are no other

conflicting changes happening at the same time. This list can

contain a seemingly endless set of records to document, but

a final important piece is the backout plan: what to do when

the change goes south, despite your best efforts. Ensuring a

functional environment is most frequently more important

than implementing the change to it.

III. AUDITING TECHNICAL CONTROLS

Even once an application or process has been

deemed secure or bug-free enough to release, the system as

a whole must also be tested, including its surrounding

physical environment, its users, its technical assets and

processes, and the interaction between all of these. A

system, facility, or application can appear to be secure, but

if the users’ actions leave the system vulnerable, then all is

for naught. To combat this possibility, periodic audits of the

security performance must be evaluated, but not every audit

or test is equal.

First, white box testing [8-10] provides the testers

with the internal implementations of the software and

systems. White box testing is useful for finding errors in

hidden code by removing extra lines of code and

maximizing code coverage. However, it is expensive to

implement white box testing, and the nature of the tests can

leave many code branches untested. The relevant

techniques for white box testing involve control flow

testing, branch testing, basis path testing, data flow testing,

and loop testing. White box testing is typically done by the

developing team, or a QA team closely familiar with the

developers’ work.

Black box testing [8, 9, 11] takes the opposite

approach, providing the testers with no knowledge of the

system except the bounds of the test itself. Black box

testing is useful for efficiently testing large segments of

code from a simple perspective and developing test cases

very efficiently. Black box testing strategies include

equivalence partitioning, boundary value analysis, fuzzing,

cause-effect graphing, orthogonal array testing, all pair

testing, and state transition testing [3, 12].

Grey box testing finds a middle ground between

black and white, providing general knowledge of the

internal operations of the system. Grey box testing carries

many of the benefits of both black and white testing,

allowing for many specific elements to be tested knowing

the general purpose of the algorithms under scrutiny, while

still writing minimal amounts of efficient tests. The

techniques used here include Architecture models, unified

model diagrams, and finite state machines.

While black, white, and grey box testing can

efficiently determine the effectiveness of the code, internal

software testing does not cover every aspect of the

vulnerabilities that a CyberSystem can bare.

 Think of this for a second, a company created a

website application that takes user credit card information

to purchase a product. How does the user know that once

the credit card information entered for the purchase is safe?

Unfortunately, that is the case when it comes to users

feeling unsafe when it comes to their information because

of the rise of data breaches like Target. For this reason, and

many other reasons unmentioned, penetration testing is

very important when it comes to Cyber protection. If me as

an attacker can find a way to mess with the database from

the web application produced, that will be identified as an

SQL Injection attack [13-16].

Vulnerability testing is conducted as a series of

steps that have one general purpose: Identify a way to get in

the system, and how to address each vulnerability that is

identified. As mentioned earlier, with an SQL Injection

attack those types of threats are identified and addressed by

changing the way that information is taken in to the system.

As soon as this threat is fixed, it is retested through the

penetration testing phase. This process gets repeated as

many times as needed to help ensure that the safest product

being developed is out there.

Once these tests are completed, we move into

integration testing [17-19]. The purpose of the integration

testing is to see how the application works with a majority of

components integrated together. From there, we can see how

the application interacts altogether with the network and

from there address any issues that may arise.

IV. TESTING ADMIN CONTROLS

Another aspect that needs to be tested besides code

and application practices on a network is the administrative

perspective. If left unchecked and untested, administrative

misconfiguration could provide an attacker a back door into

the network expose it, do what he wants to a network, and

the attack can almost go unnoticed due to the lack of

administrative scrutiny. This can potentially be very

dangerous, as this creates the opportunity for an attack as

serious as the Target Data breach. While the development

teams are responsible for ensuring the secure internal

processes are created, it is up to the administrative leaders to

ensure that the policies surrounding protecting the systems

are implemented properly.

The first such administrative control are user

permissions. When initially hired or introduced to the

system, users should be granted access only to the necessary

systems. As the user progresses through his position, his

assigned accesses must change and grow with his function

within the corporation. When these users are transferred

between departments or let go, this change should trigger

another audit to ensure that the permissions are still

appropriate for that user’s position. These audits protect both

the user and the company, as the user cannot negatively

affect systems he should not be using, and his responsibility

is lessened to solely protecting the systems for which he is

responsible, and no more. Beyond the triggers on these

boundary conditions, the user permissions should be audited

at a regular interval, to be sure that his permissions were not

inadvertently expended or constrained beyond the necessary

limit. This rigorous inspection of the permissions that each

user has is beneficial for everyone: auditors, users, and

administrators, as it simplifies the already complex world of

user permission sets.

The next thing to consider is how the company

backs up data when unexpected events happen. For

example, consider a Service Desk Analyst, a call comes in

and the issue is identified as a network connectivity issue. As

he is trying to fix the issue, he overhears another call that has

a similar issue like the one he is dealing with currently. After

further analysis into the issue, a pattern emerges and look up

in the call que that there are over 50 calls waiting to be

addressed. This normally means that there is a massive

network outage and all of those calls are being affected by it.

To be prepared for this type of issue most network

teams have a network share drive set up on their network.

This means that if an excel spreadsheet is created inside a

share network file folder, network teams that have access to

that same folder can access the excel spreadsheet at any

given time. In case of a network outage, you might not be

able to access the network file at that precise moment in time.

If you have the excel sheet open at the time, you run a risk

of losing all unsaved work on that excel spreadsheet or the

network may not recognize the changes you made and will

have only the original contents of the file before any edits

were made. When these types of issues arise, sometimes it is

best practice to have a copy of that shared file on the desktop.

Each company must assess how to address different

situations that may arise and handle them accordingly. For

the above scenario, this may be a low-level occurrence, but

it can be detrimental for programs that run on the network

and depend on database connection. Especially in a bank

environment, most applications need to read stored

information. If they are working on the information during a

network outage and that type of scenario is not addressed,

you can possibly face all that data being lost in the first place.

V. IDENTIFYING TEST PERSONNEL

One of the most complexing issues companies face

is who conducts the audits. When it comes to audits, different

things need to be considered. There are recommendations to

have audits be conducted by external, third-party, vendors.

The biggest reason given is that with external audits there is

no bias and that would make the audit be completely accurate

for identifying threats.

Depending on how the company culture is, there

can be a real upside to having companies put together a team

and go through each aspect of the network together to

confirm how safe and secure it really is. There is one

negative aspect to this. Unfortunately, some companies have

environments to where if a bad report comes out about their

specific department, the employees are the ones who pay the

price.

A logical thing to do as an employee would be what

we are ethically bound to do, report the issue and address it.

An internal employee may not report all issues because they

may feel that this could jeopardize their career due to the fact

that their boss has not created an environment where that

employee can feel safe. Due to this, some companies are

beginning to feel that going third party is the way to go to

ensure that the most accurate report can be possible.

With external audits, yes it would be the more likely

best way to get an unbiased report. However, external audits

can frequently be very expensive, so these are usually only

utilized in small organizations or locations that are at risk of

bias on the part of the individuals that would perform the

audit. One guide on how to think about it is, the more you

spend is the more you can almost ensure that the system is

going to be very secure. Sometimes the only issue is that

when companies value money over cost vs trying to come up

with the money to have a secure system, you leave yourself

open to potentially costing yourself millions of dollars.

Then, you would reinvest into trying to make the system

more secure to rebuild the reputation.

VI. AUDIT REPORTING

The tests and audits are not simply completed for

the sake of running tests and audits. Each test or audit begins

with explicit intent, whether it be for routine health checks,

or because the government found a serious legal issue.

Communicating the results of the audit is perhaps as

important as the audit itself, as an improperly communicated

report may lead the management to take yet another

inappropriate, or potentially damaging action.

Any audit report should begin with a proper

executive summary, which gives a brief summary of why the

audit is important, what was found, and what needs to be

done about it. This section should include key talking points

and vulnerabilities. When presented to the other portions of

the company, the executive summary will provide the key

talking points on why your recommendations are so

important.

From the executive summary, the report should

naturally continue into its background. The background will

highlight specific pieces of legislation, particular issues that

were experienced, and other reasons why this audit or test

was performed. This context will be important for deciding

whether and how quickly the recommendations are

implemented into company policy and program.

The methodology will then describe the process

taken to provide the results of the test. Whether it be through

automated scripts, by compiling an excel document

summarizing the current state, or by manually running

through a checklist, the methodology is important for

justifying why the results are valid. In this case, the results

are just as important as the process taken to get them.

After describing the means of the test, the findings

can finally be reported in full detail. This does not mean to

dump the full data set acquired during testing onto the page,

but a reasonable summary of the data with a brief analysis

turns these results into truly useful information.

Finally, provide recommendations to the readers of

the report. As the executor of the test or audit, the writer has

typically seen one or more ways to improve the processes

being tested. This is the opportunity to provide the advice

rooted in technical expertise before the management tries to

imagine some crazy solution that doesn’t actually fix the

problem. If possible, provide recommendations on ways to

correct each vulnerability or error encountered during the

audit. With no instruction on how to fix the problems, the

creators of the problems are liable to commit the same

atrocities yet again.

VII. CONCLUSION

When it comes to doing security assessments,

nothing should be overlooked. They are the opportunity to

lay everything bare and identify the issues. With the proper

methods in place, you can ensure that all systems are up to

date and offer the best protection possible. It would also be

best to not overlook even the smallest of security flaws

because the smallest components of a system can be

exploited and used against you. If there are proper security

protocols in place, you normally would never encounter a

security breach or be at risk for having information stolen.

Sometimes cost is a major factor for determining how much

to spend on security, but if your goal is to create the most

secure system, something has to give. It almost seems like a

tough call to make at times, but it is a necessary one to make.

REFERENCES

[1] Keith Jarvis, Jason Milletary. “Inside a Targeted Point-of-

Sale Data Breach” Dell SecureWorks Counter Threat Unit

Intelligence. January 2014

[2] E. Maximilien, Laurie Williams. “Assessing Test-Driven

Development at IBM“ IEEE. May 2003

[3] Mohd. Ehmer Khan, Farmeena Khan. A Comparative Study

of White Box, Black Box and Grey Box Testing Techniques.

IJACSA Vol. 3, No.6, 2012

[4] Astels, Dave. Test driven development: A practical guide.

Prentice Hall Professional Technical Reference, 2003.

[5] Solis, Carlos, and Xiaofeng Wang. "A study of the

characteristics of behaviour driven development." In 2011

37th EUROMICRO Conference on Software Engineering

and Advanced Applications, pp. 383-387. IEEE, 2011.

[6] Siponen, Mikko T. "A conceptual foundation for

organizational information security awareness." Information

Management & Computer Security 8, no. 1 (2000): 31-41.

[7] Manworren, Nathan, Joshua Letwat, and Olivia Daily. "Why

you should care about the Target data breach." Business

Horizons 59, no. 3 (2016): 257-266.

[8] Nidhra, Srinivas, and Jagruthi Dondeti. "Black box and

white box testing techniques-a literature review."

International Journal of Embedded Systems and

Applications (IJESA) 2, no. 2 (2012): 29-50.

[9] Khan, Mohd Ehmer, and Farmeena Khan. "A comparative

study of white box, black box and grey box testing

techniques." Int. J. Adv. Comput. Sci. Appl 3, no. 6 (2012).

[10] Khan, Mohd Ehmer. "Different approaches to white box

testing technique for finding errors." International Journal of

Software Engineering and Its Applications 5, no. 3 (2011):

1-14.

[11] Edwards, Stephen H. "A framework for practical,

automated black‐box testing of component‐based software."

Software Testing, Verification and Reliability 11, no. 2

(2001): 97-111.

[12] Gilfix, Michael A., and Rhys D. Ulerich. "Method for

testing branch execution and state transition logic in session

initiation protocol application modular components." U.S.

Patent 7,499,405, issued March 3, 2009.

[13] Halfond, William G., Jeremy Viegas, and Alessandro

Orso. "A classification of SQL-injection attacks and

countermeasures." In Proceedings of the IEEE International

Symposium on Secure Software Engineering, vol. 1, pp. 13-

15. IEEE, 2006.

[14] Boyd, Stephen W., and Angelos D. Keromytis.

"SQLrand: Preventing SQL injection attacks." In

International Conference on Applied Cryptography and

Network Security, pp. 292-302. Springer, Berlin,

Heidelberg, 2004.

[15] Clarke-Salt, Justin. SQL injection attacks and defense.

Elsevier, 2009.

[16] Wei, Kei, Muthusrinivasan Muthuprasanna, and Suraj

Kothari. "Preventing SQL injection attacks in stored

procedures." In Australian Software Engineering

Conference (ASWEC'06), pp. 8-pp. IEEE, 2006.

[17] Jorgensen, Paul C., and Carl Erickson. "Object-oriented

integration testing." Communications of the ACM 37, no. 9

(1994): 30-39.

[18] Hartmann, Jean, Claudio Imoberdorf, and Michael

Meisinger. "UML-based integration testing." In ACM

SIGSOFT Software Engineering Notes, vol. 25, no. 5, pp.

60-70. ACM, 2000.

[19] Wu, Ye, Mei-Hwa Chen, and Jeff Offutt. "UML-based

integration testing for component-based software." In

International Conference on COTS-Based Software

Systems, pp. 251-260. Springer, Berlin, Heidelberg, 2003.

[20] Mangipudi, Prasad. "Method and apparatus for archiving

data during unexpected power loss." U.S. Patent 7,954,006,

issued May 31, 2011.

[21] Kwon, Min Cheol, Woon Hyug Jee, Dong Jun Shin, and

K. I. M. Shine. "Nonvolatile memory system and related

method of preserving stored data during power

interruption." U.S. Patent 8,554,990, issued October 8,

2013.

David Culbreth is a graduate

student at St. Mary’s

University, San Antonio,

Texas enrolled in the MS

Cybersecurity degree

program. He received his

B.Sc. in Computer

Engineering and his B.A. in

Mathematics from St. Mary’s in 2018. David has been

a Software Developer at USAA for one year,

supporting the company in its needs for physical

security applications.

Adan Guadarrama is a

graduate student at St.

Mary’s University, San

Antonio, Texas enrolled in

the MS Cybersecurity

degree program. He

received his B.Sc. in

Computer Science from St.

Mary’s in 2019. Adan has

been a Help Desk

Technician both at USAA

and St Mary’s University. Adan has focused these last

few years studying the purposes of secure

programming practices.

Ayad Barsoum is an

Associate Professor in

Computer Science

Department at St.Mary's

University, San Antonio,

Texas. He is the

Graduate Program

Director of MS in

Cybersecurity. Dr.

Barsoum received his

Ph.D. degree from the Department of Electrical and

Computer Engineering at the University of Waterloo

(UW), Ontario, Canada in 2013. He is a member of the

Centre for Applied Cryptographic Research at UW.

He received his B.Sc. and M.Sc. degrees in

Computer Science from Ain Shams University, Cairo,

Egypt, in 2000 and 2004, respectively.

At the University of Waterloo, Barsoum has received

the Graduate Research Studentship, the International

Doctoral Award, and the University of Waterloo

Graduate Scholarship. Dr. Barsoum has received

“Amazon Web Services in Education Faculty Grant”

for funding his research and teaching through using

Amazon cloud infrastructure

